191 research outputs found

    Origin of Lagrangian Intermittency in Drift-Wave Turbulence

    Full text link
    The Lagrangian velocity statistics of dissipative drift-wave turbulence are investigated. For large values of the adiabaticity (or small collisionality), the probability density function of the Lagrangian acceleration shows exponential tails, as opposed to the stretched exponential or algebraic tails, generally observed for the highly intermittent acceleration of Navier-Stokes turbulence. This exponential distribution is shown to be a robust feature independent of the Reynolds number. For small adiabaticity, algebraic tails are observed, suggesting the strong influence of point-vortex-like dynamics on the acceleration. A causal connection is found between the shape of the probability density function and the autocorrelation of the norm of the acceleration

    Inertial range scaling of the scalar flux spectrum in two-dimensional turbulence

    Full text link
    Two-dimensional statistically stationary isotropic turbulence with an imposed uniform scalar gradient is investigated. Dimensional arguments are presented to predict the inertial range scaling of the turbulent scalar flux spectrum in both the inverse cascade range and the enstrophy cascade range for small and unity Schmidt numbers. The scaling predictions are checked by direct numerical simulations and good agreement is observed

    The CD4+ T-cell transcriptome and serum IgE in asthma: IL17RB and the role of sex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The relationships between total serum IgE levels and gene expression patterns in peripheral blood CD4+ T cells (in all subjects and within each sex specifically) are not known.</p> <p>Methods</p> <p>Peripheral blood CD4+ T cells from 223 participants from the Childhood Asthma Management Program (CAMP) with simultaneous measurement of IgE. Total RNA was isolated, and expression profiles were generated with Illumina HumanRef8 v2 BeadChip arrays. Modeling of the relationship between genome-wide gene transcript levels and IgE levels was performed in all subjects, and stratified by sex.</p> <p>Results</p> <p>Among all subjects, significant evidence for association between gene transcript abundance and IgE was identified for a single gene, the interleukin 17 receptor B (IL17RB), explaining 12% of the variance (r<sup>2</sup>) in IgE measurement (p value = 7 × 10<sup>-7</sup>, 9 × 10<sup>-3 </sup>after adjustment for multiple testing). Sex stratified analyses revealed that the correlation between IL17RB and IgE was restricted to males only (r<sup>2 </sup>= 0.19, p value = 8 × 10<sup>-8</sup>; test for sex-interaction p < 0.05). Significant correlation between gene transcript abundance and IgE level was not found in females. Additionally we demonstrated substantial sex-specific differences in IgE when considering multi-gene models, and in canonical pathway analyses of IgE level.</p> <p>Conclusions</p> <p>Our results indicate that IL17RB may be the only gene expressed in CD4+ T cells whose transcript measurement is correlated with the variation in IgE level in asthmatics. These results provide further evidence sex may play a role in the genomic regulation of IgE.</p

    EWS-FLI1 Utilizes Divergent Chromatin Remodeling Mechanisms to Directly Activate or Repress Enhancer Elements in Ewing Sarcoma

    Get PDF
    SummaryThe aberrant transcription factor EWS-FLI1 drives Ewing sarcoma, but its molecular function is not completely understood. We find that EWS-FLI1 reprograms gene regulatory circuits in Ewing sarcoma by directly inducing or repressing enhancers. At GGAA repeat elements, which lack evolutionary conservation and regulatory potential in other cell types, EWS-FLI1 multimers induce chromatin opening and create de novo enhancers that physically interact with target promoters. Conversely, EWS-FLI1 inactivates conserved enhancers containing canonical ETS motifs by displacing wild-type ETS transcription factors. These divergent chromatin-remodeling patterns repress tumor suppressors and mesenchymal lineage regulators while activating oncogenes and potential therapeutic targets, such as the kinase VRK1. Our findings demonstrate how EWS-FLI1 establishes an oncogenic regulatory program governing both tumor survival and differentiation

    Detection and Early Referral of Patients With Interstitial Lung Abnormalities: An Expert Survey Initiative

    Get PDF
    Background: Interstitial lung abnormalities (ILA) may represent undiagnosed early-stage or subclinical interstitial lung disease (ILD). ILA are often observed incidentally in patients who subsequently develop clinically overt ILD. There is limited information on consensus definitions for, and the appropriate evaluation of, ILA. Early recognition of patients with ILD remains challenging, yet critically important. Expert consensus could inform early recognition and referral. Research Question: Can consensus-based expert recommendations be identified to guide clinicians in the recognition, referral, and follow-up of patients with or at risk of developing early ILDs? Study Design and Methods: Pulmonologists and radiologists with expertise in ILD participated in two iterative rounds of surveys. The surveys aimed to establish consensus regarding ILA reporting, identification of patients with ILA, and identification of populations that might benefit from screening for ILD. Recommended referral criteria and follow-up processes were also addressed. Threshold for consensus was defined a priori as ≥ 75% agreement or disagreement. Results: Fifty-five experts were invited and 44 participated; consensus was reached on 39 of 85 questions. The following clinically important statements achieved consensus: honeycombing and traction bronchiectasis or bronchiolectasis indicate potentially progressive ILD; honeycombing detected during lung cancer screening should be reported as potentially significant (eg, with the Lung CT Screening Reporting and Data System “S-modifier” [Lung-RADS; which indicates clinically significant or potentially significant noncancer findings]), recommending referral to a pulmonologist in the radiology report; high-resolution CT imaging and full pulmonary function tests should be ordered if nondependent subpleural reticulation, traction bronchiectasis, honeycombing, centrilobular ground-glass nodules, or patchy ground-glass opacity are observed on CT imaging; patients with honeycombing or traction bronchiectasis should be referred to a pulmonologist irrespective of diffusion capacity values; and patients with systemic sclerosis should be screened with pulmonary function tests for early-stage ILD. Interpretation: Guidance was established for identifying clinically relevant ILA, subsequent referral, and follow-up. These results lay the foundation for developing practical guidance on managing patients with ILA

    Bcl11b sets pro-T cell fate by site-specific cofactor recruitment and by repressing Id2 and Zbtb16

    Get PDF
    Multipotent progenitor cells confirm their T cell–lineage identity in the CD4^–CD8^– double-negative (DN) pro-T cell DN2 stages, when expression of the essential transcription factor Bcl11b begins. In vivo and in vitro stage-specific deletions globally identified Bcl11b-controlled target genes in pro-T cells. Proteomics analysis revealed that Bcl11b associated with multiple cofactors and that its direct action was needed to recruit those cofactors to selective target sites. Regions near functionally regulated target genes showed enrichment for those sites of Bcl11b-dependent recruitment of cofactors, and deletion of individual cofactors relieved the repression of many genes normally repressed by Bcl11b. Runx1 collaborated with Bcl11b most frequently for both activation and repression. In parallel, Bcl11b indirectly regulated a subset of target genes by a gene network circuit via the transcription inhibitor Id2 (encoded by Id2) and transcription factor PLZF (encoded by Zbtb16); Id2 and Zbtb16 were directly repressed by Bcl11b, and Id2 and PLZF controlled distinct alternative programs. Thus, our study defines the molecular basis of direct and indirect Bcl11b actions that promote T cell identity and block alternative potentials

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi
    corecore