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Abstract 
ATP-dependent chromatin remodelling enzymes are molecular 
machines that act to reconfigure the structure of nucleosomes. Until 
recently, little was known about the structure of these enzymes. 
Recent progress has revealed that their interaction with chromatin is 
dominated by ATPase domains that contact DNA at favoured locations 
on the nucleosome surface. Contacts with histones are limited but 
play important roles in modulating activity. The ATPase domains do 
not act in isolation but are flanked by diverse accessory domains and 
subunits. New structures indicate how these subunits are arranged in 
multi-subunit complexes providing a framework from which to 
understand how a common motor is applied to distinct functions.
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Introduction
In addition to packaging DNA within nuclei, chromatin  
provides a means of segmenting the genome into distinct  
chromatin states that ensure that transcription is regulated  
correctly in time and space1. Conversion between chromatin 
states involves changes to chromatin at different levels, including  
post-translational modifications to histones and DNA,  
recruitment of chromatin-binding factors and direct changes 
to the structure of nucleosomes as a result of the action of  
chromatin remodelling ATPases.

ATP-dependent chromatin remodelling enzymes are molecu-
lar machines that act to reconfigure nucleosomes so as to enable 
gene regulation in response to developmental and environmen-
tal signals. Interest in this fundamental process has heightened  
with the finding that many subunits of these complexes are  
mutated at high frequencies in cancers and neurological disorders.

The involvement of chromatin remodelling ATPases in this 
process was first evident from the finding that mutations in 
the genes that encode components of these complexes affect  
processes such as mating type switching (SWI) and sucrose  
fermentation (SNF) in budding yeast2. Many of the genes identified  
in these screens were found to associate as multi-subunit SWI/
SNF complexes that had the ability to reconfigure chromatin3.  
Subsequently, budding yeast were found to encode a  
related complex, remodels the structure of chromatin (RSC), in 
which many (but not all) subunits are paralogs of those found in 
SWI/SNF4. Multicellular organisms also encode related complexes. 
In Drosophila, the Brahma complex falls within the trithorax 
group of developmental regulators5–7. In mammalian cells, three  
forms of SWI/SNF-related complexes have been identified6–8  
(Table 1). Homozygous loss of genes encoding most subu-
nits results in early developmental defects; in humans, com-
ponents of the complexes are frequently mutated in cancers9.  
More recently, it has emerged that mutations to complex  

components are also detected in neurological disorders10. 
Intriguingly, different subunits are found to be mutated both in  
cancers of different tissues and in neurological disorders.

Biochemical characterisation of the complexes indicated that 
they can disrupt nucleosome structure3,11. Consistent with 
this, the complexes are linked to the maintenance of accessi-
ble chromatin structure at promoters in yeast and at enhancers  
in mammalian cells12–18. The complexes contain a catalytic subu-
nit that is related to ancient ATP-dependent DNA translocases 
and that acts to drive DNA across the surface of nucleosomes.  
These specialised ATPase domains are found in an extended 
family of some 20 yeast and 40 human proteins that regulate  
DNA–protein interactions19. In the context of SWI/SNF com-
plexes, ATPase subunits act in the repositioning, destabilisation 
and dissociation of histones from DNA20. Until recently, a struc-
tural framework on which the mechanism of action can be built  
has been lacking.

Here, we summarise recent insights into the structure of ATP-
dependent remodelling enzymes. These show that remodel-
ling enzymes share an ATPase module that acts on DNA within  
nucleosomes and that this motor domain is tuned to different  
purposes within distinct multi-subunit complexes.

Snf2 ATPases: a motor domain for nucleosome 
reorganisation
The ATPase domains found in the yeast Snf2 protein are also 
present in an extended family of chromatin remodelling enzymes. 
Crystal structures of Rad54 and Chd1 proteins illustrated that 
each domain is made up of folds related to those found in bacte-
rial RecA21–23. More recently, cryogenic electron microscopy  
(cryo-EM) has been used to obtain structures of yeast Snf2, 
human (SNF2H) and yeast ISWI (imitation SWI) proteins and 
yeast Chd1 proteins in complex with nucleosomes24–29 (Figure 1).  
These studies show that each enzyme is capable of binding to 

Table 1. 

Yeast SWISNF Yeast RSC Human BAF Human PBAF

Snf2/Swi2 Sth1 SMARCA2/SAMRCA4 SMARCA4 SMARCA4

Swi1/Adr6 Rsc9 ARID1A /ARID1B ARID2 GLTSCR1 / BICRAL1

Swi3 Rsc8 SMARCC1/SMARCC2 SMARCC1/SMARCC2 SMARCC1

Snf12/Swp73 Rsc6 SMARCD1/D2/D3 SMARCD1/D2/D3 SMARCD1

Snf5 Sfh1 SMARCB1 SMARCB1

Rsc2/4/58 PBRM /Brd7 BRD9

Swp82 Rsc7 DPF1/2/3 PHF10 DPF3

Arp7/9 Arp7/9 ACTL6A/β-Actin ACTL6A/β-Actin ACTL6A/β-Actin

HTL1

Rsc3/30

SMARCE1 SMARCE1
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nucleosomes two helical DNA turns away from their centres. Each  
of these enzymes engages with nucleosomes predominantly 
through contacts with DNA, and there are relatively few contacts 
with the histone components of nucleosomes. One exception  
observed in each structure is that the N-terminal region of  
histone H4 contacts the second ATPase domain. This region on 
the H4 tail is required for full activity of the SNF2H, Chd1 and 
Snf2 proteins and may act to ensure that full activity is reached 
only when the ATPase domains are correctly docked on nucleo-
somes. Higher-resolution studies provide enough detail to detect  
changes in the positioning of individual DNA bases in dif-
ferent nucleotide-bound states. Remarkably, binding in the 
presence of ADP results in the propagation of a distortion to 
DNA, predominantly on one strand, across some 55 base pairs  
of the octamer surface24. As distinct distortions to DNA are 

observed in different nucleotide-bound states, it is possible to envi-
sion how co-ordinated small movements could drive DNA across  
the nucleosome surface12,13.

ATPase subunits are found within larger proteins. In the case 
of Chd1, chromodomains and a DNA-binding domain adja-
cent to the ATPase domain contribute to the nucleosome-bound  
state (Figure 1C) and are sufficient to generate an enzyme active 
in chromatin remodelling. This does raise the question of why 
many remodelling ATPases are found as components of much  
larger multi-subunit complexes.

The INO80 and SWR1 enzymes
A first close-up view of multi-subunit remodelling ATPases came 
from the structural characterisation of the INO80 and SWR1 

Figure 1. Structure of Snf2-related enzymes SNF2H, Snf2 and Chd1 bound to nucleosome. (A) Structural model of Saccharomyces 
cerevisiae Snf2 ATPase domain fragment bound to a nucleosome at super helical location 2 (SHL ± 2) (PDB ID 5XOY)25. The Snf2-related 
ATPase lobe1 and 2 are coloured in marine and blue spheres. The nucleosomal DNA is shown in surface representation, the backbone 
phosphate atom is highlighted in red sphere, and the dyad (SHL 0) of the nucleosome is marked. The histones are shown in black surface 
representation. The histone H4 tail that interacts with the lobe2 of ATPase domain is coloured green. (B) Structural model of human ISWI 
remodeller SNF2H bound to nucleosome (PDB ID 6NE3)29. The nucleosome and the ATPase lobes are presented in the same colours as in 
frame A.  (C) Structural model of Chd1 bound to nucleosomes. The structure of Chd1–nucleosome complex resolved at 4.5-Å resolution using 
cryogenic electron microscopy (PDB ID 6FTX)28. The Chd1 ATPase shown in spheres is characterised by N-terminal tandem chromodomains 
and a C-terminal SANT-SLIDE–containing DNA-binding domain (DNABD). The Chd1 DNA-binding domain coloured in slate was found to be 
located at the edge of the nucleosome in the boundary between nucleosomal and linker DNA. The Chd1 ATPase lobes drawn in marine and 
blue are bound at the SHL 2 location distal to the linker DNA, and the chromodomains drawn in yellow at the SHL 1 location. Similar to the 
Snf2 and Snf2h, the histone H4 tail interacts with the ATPase lobe2. The dyad of the nucleosome is marked. Two turns of nucleosomal DNA 
prised from the surface of the histone octamer upon Chd1 binding.
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complexes31–33 (Figure 2). Surprisingly, the ATPase domains  
of these complexes engage with nucleosomes at different  

locations. The Ino80 ATPase domains interact with DNA at the 
edge of the nucleosomes causing unwrapping of outer turns of  

Figure 2. Structure of INO80 and SWR1 complexes. (A) Schematic showing the signature ATPase subunit of the Ino80 and Swr1 
remodellers. The ATPase is characterised by a split ATPase domain with a large insert region that associates with RuvB proteins and an  
N-terminal HSA domain that associates with ARP proteins. (B) Structural model of INO80–nucleosome complex resolved at 4.3-Å resolution 
using cryogenic electron microscopy (cryo-EM) (PDB ID 6FML)32. The subunits that form the INO80–nucleosome complex are labelled. The 
RuvB hexamer is shown in grey, and the Ino80 insert region that threads through RuvB hexamer in yellow. The nucleosome is shown in 
surface representation, and the DNA backbone phosphate atoms are highlighted as red spheres. The dyad of the nucleosome SHL 0 is 
labelled. The Ino80 HSA-Arp8-Actin-Arp4 module (PDB ID 5NBN)35 is docked into EM density observed in this region33 (coloured light blue). 
From this location, the Arp8-Actin-Arp4 module potentially interacts with nucleosomal linker DNA and these subunits do indeed cross-link 
with DNA in this region39. Arp5 is shown in orange, Ies6 in pink and Ies6 purple. Ino80 ATPase lobe1 and 2 are coloured in marine and 
dark blue respectively. (C) Structural model of SWR1–nucleosome complex resolved at 3.6-Å resolution using cryo-EM (PDB ID 6FML)31. The 
RuvB hexamer is shown in light grey, and the Swr1 insert region that threads through RuvB hexamer in yellow sphere. This extended helical 
region protrudes through the RuvB hexamer and makes contact with the Arp6 subunit (orange). The Swc6 and Swc2 subunits are coloured 
pink and purple. The nucleosome and ATPase domains are represented as in frame B.

Page 5 of 14

F1000Research 2020, 9(Faculty Rev):1011 Last updated: 24 AUG 2020



DNA, whereas in Swr1 they interact at the off-centre site 
also observed for Snf2 and Chd1. Despite these differences, 
the Swr1 and Ino80 proteins share distinctive large insertion 
regions separating the two ATPase domains. In both cases, the 
insert regions are intertwined with a hetero-hexamer of RuvB  
proteins, a second type of conserved ATPase belonging to the 
AAA+ group that are found in both INO80 and SWR1 com-
plexes. The Ino80 and Swr1 insert domains appear to represent a 
specific adaption of the Snf2-related ATPase domains to function  
in concert with hetero-hexameric RuvB-related proteins.  
Mysteriously, ATP hydrolysis by the RuvB proteins is not 
required for Swr1 histone exchange activity; as a result, they have  
been proposed to function as a scaffold31. The INO80 and SWR1 
complexes also contain hetero-dimers of proteins that con-
tain actin folds. These include the Arp5/Ies6 hetero-dimer in the 
INO80 complex and the Arp6/Swc6 hetero-dimer in the SWR1 
complex. These dimers interact on the side of the nucleosome  
opposite to that occupied by the ATPase domains. In the case of 
the SWR1 complex, the Arp6/Swc6 interacts with outer turns of 
nucleosomal DNA at super-helical location (SHL) 6 and histone  
H2A/H2B dimer surface and generates an unwrapping of 
one turn of nucleosomal DNA14,15. In the case of Arp5/Ies6,  
the interaction is internal to the nucleosome. INO80 and SWR1 
also contain a second grouping of actin fold proteins: the Arp8/
Arp4/actin module. This module has been studied in isolation  
and is known to interact with a helicase-SANT-associated  
(HSA) domain present N-terminal to the ATPase domains of 
many remodelling ATPases where it acts as a linker DNA-binding  
module that regulates activity16–19. Density for the Arp8/Ar4/actin  
module is not observed in one structure32, but weak density 
is observed in the other33 (Figure 2B). From this location, the 
module is well placed to interact with extranucleosomal linker  
DNA. Consistent with this, this region cross-links to linker 
DNA and regulates the coupling between ATP-hydrolysis and  
nucleosome repositioning39.

In summary, while the INO80 and SWR1 complexes share insert 
regions that mediate interactions with RuvB hetero-hexamers,  
they engage with nucleosomes in different orientations. The 
two complexes also have distinct biochemical activities.  
INO80 is capable of repositioning nucleosomes20,21, whereas 
SWR1 directs replacement of histone H2A/H2B dimers with the 
variant histone H2A.Z/H2B dimers42. The molecular mechanisms  
underlying these distinct outcomes remain to be determined.

SWI/SNF complexes: multi-tools for chromatin 
remodelling
As with the INO80 and SWR1 complexes, cryo-EM has been 
applied to determine the structures of the yeast SWI/SNF and 
RSC complexes. Initially, lower-resolution structures indicated 
that these complexes are globular with a C-shaped central cav-
ity of appropriate dimensions to accommodate a nucleosome22–25.  
Very recent higher-resolution structures of budding yeast RSC and 
SWI/SNF and human BAF complexes reveal a distinct organisa-
tion in which the Rsc8, Swi3 or human SMARCC proteins form 
a dimeric hub at the core of the complex46–50 (Figure 3A–D).  
Yeast Rsc8, Swi3 and the human SMARCC1 and SMARCC2 
proteins all contain N-terminal SWIRM domains, Zinc  

finger-binding modules, a SANT domain and C-terminal  
dimerisation domains. Within the complexes, the long dimerisation 
helices interact in a parallel orientation reminiscent of the Fos/Jun 
dimerisation module51 (Figure 3D). Furthermore, the N-terminal  
SWIRM domains are not arranged symmetrically but adopt dis-
tinct conformations (Figure 3D). This asymmetry is likely imposed 
by the interaction of the two SWIRM domains with tandem 
repeats within the Sfh1/Snf5/SMARCB1 protein (Figure 3D).  
The Rsc8/Swi3/SMARCC dimerisation interface is also con-
tacted and likely stabilised by Rsc6/Snf12/SMARCD1 and the  
N-terminal region of the ATPase subunit Sth1/Snf2/SMARCA4. 
The core formed by the Rsc8/Swi3/SMARCC dimers and 
Rsc6/Snf12/SMARCD1 is conserved from yeast to humans  
and these subunits are present within the three major forms of 
SWI/SNF-related complex present in humans (Table 1). This core 
likely serves as a platform from which accessory modules adapt 
the complex for distinct functions. Within the RSC, SWI/SNF 
and BAF complexes, five distinct modules are appended to the  
core (Figure 3):

i)    Adjacent to the Rsc8 dimerisation helices, the armadillo  
repeats of the Rsc9/Swi1/ARID1A protein are visible.  
The ARID1A and ARID2 proteins are distinguishing  
features of the BAF and PBAF forms of mammalian  
complex positioned some distance from the ATPase 
domains and likely provide as-yet-uncharacterised  
complex-specific functionality.

ii)   The tandem bromodomain-containing Rsc2 and Rsc4 
proteins are located close to the C-terminus of Rsc8. 
In mammalian PBAF complex, the polybromo protein  
PBRM1 is likely to interact at a similar location.

iii   In between these regions, the HSA domain of Sth1/Snf2/
SMARCA4 protrudes en route to the motor domains 
which engage with the nucleosome in an orientation 
similar to that observed with the isolated Snf2 protein.  
The HSA domain interacts with the actin fold subunits 
Arp7 and Arp9 and, together with Rtt102, has been crys-
tallised independently36. This HSA-ARP module links 
the ATPase domains to the central core based around 
the Rsc8 dimer. This module is shared in SWI/SNF,  
RSC, INO80 and SWR1 complexes16–19.

iv)   The nucleosomal linker DNA extends back towards 
the Rsc8 core and may make contact with a DNA-
binding domain which, at present, is poorly resolved  
but likely to be composed of the Rsc3 and Rsc30 subunits.

v)   The Sfh1/Snf5/SMARCB1 protein C-terminus extends 
back forming a distinct nucleosome-binding module 
located such that it is placed to interact with the acidic 
patch region on the lateral surface of the nucleosome.  
This contact is shared in SWI/SNF and RSC complexes 
that also have the ability to both reposition and evict 
nucleosomes but is not present in SNF2H and Chd1 
complexes which only reposition nucleosomes. Fur-
thermore, mutation of the C-terminal region of Sfh1  
that interacts with the acidic patch specifically decreases 
the ability of RSC complexes to evict nucleosomes 
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Figure 3. Structure of the RSC and human SWI/SNF (BAF) complex bound to a nucleosome. (A)  The structure of the RSC–nucleosome 
complex (PDB ID 6K15, 6KW3, 6KW4)46. The structure can be considered a core or hub module made up principally of the Rsc8 and Rsc6 
subunits which are coloured teal. From this, additional modules with distinct functionality extend in different directions: the armadillo 
repeat-containing Rsc9 is shown in orange; Sfh1 which contacts the nucleosome lateral surface, the pin module, is shown in marine; the 
two tandem bromodomain-containing subunits Rsc2 and Rsc4, together with Rsc58, are coloured pink; the main ATPase Sth1 is coloured 
red; and Arp7-Rtt012-Arp9 are coloured yellow. The bound nucleosome is shown in similar representation as in Figure 1 and Figure 2. 
(B) The structure of the SWI/SNF chromatin remodelling complex PDB 6UXW48. Homologous subunits (Table 1) are coloured similarly to 
those in RSC. The Swi3, Snf12 and Snf6 constituents of the core module are coloured in teal, the armadillo repeat-containing Swi1 protein 
in orange, the Arp module in yellow, the Snf5 pin module in marine, the Snf2 ATPase in red and the nucleosome as in frame A. (C) The 
structure of Arid1A-containing human BAF complex (PDB 6LTH, 6LTJ)47. The complex has a geometry similar to that of the yeast RSC and 
SWI/SNF complexes. The core of the BAF complex is composed of the SMARCC2 dimer, the HMG domain-containing SMARCE1 protein 
and the SWIB domain-containing SMARCD1 protein and is shown in teal. The SWIRM domain of the SMARCC2 dimer mediates interaction 
with the tandem RPT domain of SMARCB1 protein shown in marine. The nucleosome acidic patch is contacted by the SMACB1 C-terminal 
region, and the pin module is similar to that observed in the RSC and SWI/SNF–nucleosome complexes. SMARCA4 ATPase is shown in red 
bound to the nucleosome at SHL 2 location and the N-terminal region of ATPase and the pre-HSA domain anchored onto the core of the 
complex. The Arid1A armadillo repeat domain drawn in orange occupies the central cavity formed by the L-shaped SMARCC2 dimer. The 
ARP module drawn in yellow surface constitutes the Actl6A/β-actin dimer associated with the ATPase HSA domain and forms a bridge 
between the SMARCA4 ATPase and the core module. (D) Expanded view of SMARCC dimer coloured cyan and dull blue. SMARCC2 has N-
terminal SWIRM and SANT domains. SMARCB1 tandem repeat domains (RPT1 and RPT2), shown in blue and marine, interact with each of 
the SWIRM domains from the dimer of SMARCC2. Similarly, the SANT domain clamps the N-terminal region of ATPase SMARCA4 shown in 
cartoon representation and coloured in red.

with little effect on ATPase activity46. This contact is  
conserved in human forms of SWI/SNF complex47 
and mutations in this region observed in patients with  

Coffin–Siris syndrome also affect the ability of complexes 
to reconfigure nucleosomes52. It is possible that contact with 
this region confers specificity for histone variants53.
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vi)   The structures of nucleosome-bound complexes are 
in all cases relatively low and combined with higher- 
resolution structures of nucleosome-free complexes. This  
means that it is not possible to determine whether 
detail observed in the higher-resolution structures of 
the Snf2 ATPase fragment bound to a nucleosome,  
including the location of the histone H4 tail, hold true  
in the context of nucleosome-bound complexes.

Overall, the structure can be considered a central hub from which 
modules representing sites of association for ARID-containing 
proteins, multi-bromodomain–containing subunits, the ATPase 
domains, a linker DNA-binding domain and a module that inter-
acts with the lateral surface of the nucleosome are projected in 
different directions (Figure 3A–C). The need to accommodate  
these modules, each likely to be associated with distinct func-
tionalities, goes some way to explaining the larger size of  
SWI/SNF complexes.

Mutations to SWI/SNF components in human 
disease
The major features of the RSC nucleosome structure are  
conserved in the yeast SWI/SNF complex and many of the subunits 
have equivalents in human forms of SWI/SNF complex (Table 1).  
A major difference in humans is that there are two genes 
most similar to Rsc8 in humans, SMARCC1 and SMARCC2. 
These can be present as either hetero- or homo-dimers within  
SWI/SNF complexes, but the published structure contains only 
SMARCC2.

Many features of the modular organisation of the complex are 
consistent with previous observations. For example, SWI/SNF- 
related complexes remain substantially intact following  
loss of most subunits7,26–28. This is consistent with the idea that 
individual modules are largely independent. The exception is 
the core of the complex which, through acting as a scaffold  

for association of many components, plays a more signifi-
cant role in complex integrity. Consistent with this, perturbing 
SMARCC1 and SMACC2 levels results in substantial degradation  
of SWI/SNF complexes7,29,30. Similarly, loss of all SMARCD 
isoforms (equivalent to Rsc6) results in disruption of core  
complexes and recovery of a residual core module7. Subunits 
that are not assembled correctly are subject to ubiquitinylation 
and proteasome-mediated degradation29,30. Differences in the 
potency of this surveillance system may explain some differences  
in the effects of deleting subunits in specific cell types. For exam-
ple, the peripheral association of the Sfh1/Snf5/SMARCAB1 
subunits would suggest that these are not required for complex 
integrity. Consistent with this, SWI/SNF complexes remain  
largely intact following deletion of the Snf5 subunit with only 
Swp82 and Taf14 dissociating26,27. Deletion of the human 
homolog SMARCB1 does not severely compromise complex 
integrity in HEK293T cells7 but does in rhabdoid cell lines17.  
Thus, subtle effects on subunit associations may have different 
effects on complex integrity in different tissue types. The partial 
or complete dissociation of complexes following loss of subu-
nits is, of course, relevant to diseases in which these subunits  
are lost. However, it does not necessarily inform on the path-
way by which complexes are assembled which may be distinct.  
To characterise how complexes assemble requires study of the 
order in which nascently translated peptides associate, as observed  
for assembly of SAGA complexes59.

It is estimated that 20% of all human cancers contain a 
mutation to at least one subunit of one form of SWI/SNF  
complex9. However, the ARID1A, PBRM1 and SMARCA4 subu-
nits are mutated at highest frequencies and these are mutated at 
much higher rates in tumours of some tissues in comparison with 
others (Table 2). It is notable that the SMARCC1 and SMARCC2 
subunits that form the core of the complex and are essential for 
its integrity58 are mutated at substantially lower rates (Table 2 and  
Figure 4A). It is possible that mutations that severely compromise  

Table 2. 

Gene ID Module1 Missense-Mutation Truncating-
mutations1 

Mutations/bp2 Predicted 
oncogenic3 

Arid1A ARID 1110 2231 0.487381473 231

ARID2 ARID 878 648 0.277202543 74

Arid1B 960 334 0.192903995 24

SAMRAC4 ATPASE 1306 335 0.332119004 32

SMARCA2 ATPASE 489 74 0.11802935 1

SMARCC1 CORE 257 61 0.095927602 NA

SMARCC2 CORE 337 93 0.118066996 NA

SMARCD1 CORE 160 42 0.130744337 NA

SMARCD2 CORE 119 30 0.093534212 NA

SMARCD3 CORE 103 16 0.082125604 NA

SMARCE1 CORE 95 24 0.096512571 NA
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Gene ID Module1 Missense-Mutation Truncating-
mutations1 

Mutations/bp2 Predicted 
oncogenic3 

SMARCB1 PIN 233 97 0.285714286 15

ACTL6A ARP 105 31 0.105672106 NA

ACTB ARP 275 23 0.264888889 NA

PBRM1 BROMO 661 721 0.272745214 35

DPF1 99 31 0.114035088 NA

DPF2 136 35 0.145780051 NA

DPF3 139 31 0.149911817 NA

PHF10 100 54 0.103078983 NA

BRD7 147 91 0.121863799 NA
1This indicates the module the protein product of gene is assigned to in Figure 4
2This is the sum of missense and truncating mutations identified from cBioPortal non-redundant studies divided by 
the coding sequence length in base pairs.
3This indicates number of mutations associated with annotation indicating a potential oncogenic function.

Figure 4. Depiction of different modules of BAF/PBAF complex and mutation rates. (A) A schematic representation of the major 
modules of human BAF and PBAF remodelling enzymes. Placement of modules is based on structures shown in Figure 3; the subunits 
included in each module are listed in Table 2. Note that the bromo module is not present in BAF forms of complex. Subunits are coloured 
by mutation frequency which is also represented as a graph. Mutation frequency is the sum of truncating and missense mutations in the 
coding regions of genes encoding each subunit and recovered from cbioportal61 divided by the coding length in base pairs. Truncating 
mutations and mutations annotated as likely to be oncogenic are more highly enriched in peripheral modules and depleted from the core 
region (Table 2). (B) Sites of missense mutations within SMARCA4 (red) are shown in black. Mutations are greatly enriched in the ATPase 
domains in comparison with the HSA domain that interacts with ARP proteins or the N-terminal region which is folded into the core region. 
Mutated sites obtained from non-redundant studies cohort at cbioportal61.
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complex integrity are disfavoured. Instead, mutations to a subset  
of subunits that affect one aspect of SWI/SNF functionality  
are those mutated at high rates (Table 2 and Figure 4A). The  
ARID1A component which shares armadillo repeats with Rsc9 
and Swi1 represents a discrete region adjacent to the core of the 
complex which remains intact following loss of ARID1A28,31.  
Similarly, the PBRM1 component contains six bromodomains 
and is likely related to the Rsc2, Rsc4 and Rsc58 subunits which 
occupy a location at one extremity of the core region. Dele-
tion of PBRM1 does not affect association of other subunits7,28.  
Mutations to SMARCB1 which is related to the yeast SFH1 
and SNF5 genes are relatively rare but debilitating as they drive 
malignant rhabdoid tumours60. The relatively low frequency of 
SMARCB1 mutations may be related to the fact it has no obvi-
ous partially redundant paralogs and is present in two forms  
of human SWI/SNF-related complex. SMARCA4 is mutated at 
relatively high frequency, but unlike other subunits, these muta-
tions are predominantly missense mutations clustering to the 
ATPase domains and appear to act in a dominant fashion16. In 
contrast, the high frequency of mutations in ATPase domains, the  
HSA and N-terminal region of SMARCA4 is mutated at rela-
tively low frequency (Figure 4B). As a result, the distribution of 
mutation within the SMARCA4 module re-enforces the notion 
that loss of specific aspects of the function of the complexes—in  

this case, ATPase activity—drives cancer, rather than mutations  
that affect the core region and destabilise the entire complex.

This first wave of structures provides a first insight into the layout  
of different classes of chromatin remodelling enzyme. Though 
spectacular, substantial proportions of many subunits are not 
defined, meaning that it is not possible to assign functions to the  
bromodomain and armadillo repeat-containing subunits that define 
different forms of complex. In addition, the current structures 
represent snapshots of moving machines. To build a complete  
picture of their function will require views of different stages of 
the reactions they drive. It will also be critical to determine where 
and how their activity is regulated by contacts with interaction  
partners. Nonetheless, insight into the complexes is proceed-
ing at a dramatic pace and provides a structural framework  
encompassing many of the subunits and domains present.

Abbreviations
HSA, helicase-SANT-associated; Ies, inositol eighty subu-
nit; INO80, INOsitol requiring; RSC, remodels the structure 
of chromatin; SMARCC, SWI/SNF-related matrix-associated  
actin-dependent regulator of chromatin; SWI/SNF, mating type 
SWItching/sucrose non-fermenting; SWR1, SWI-related 1;  
cryo-EM, cryogenic electron microscopy.
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