2,858 research outputs found

    The complex environment of the bright carbon star TX Psc as probed by spectro-astrometry

    Full text link
    Context: Stars on the asymptotic giant branch (AGB) show broad evidence of inhomogeneous atmospheres and circumstellar envelopes. These have been studied by a variety of methods on various angular scales. In this paper we explore the envelope of the well-studied carbon star TX Psc by the technique of spectro-astrometry. Aims: We explore the potential of this method for detecting asymmetries around AGB stars. Methods:We obtained CRIRES observations of several CO Δ\Deltav=1 lines near 4.6 μ\mum and HCN lines near 3 μ\mum in 2010 and 2013. These were then searched for spectro-astrometric signatures. For the interpretation of the results, we used simple simulated observations. Results: Several lines show significant photocentre shifts with a clear dependence on position angle. In all cases, tilde-shaped signatures are found where the positive and negative shifts (at PA 0deg) are associated with blue and weaker red components of the lines. The shifts can be modelled with a bright blob 70 mas to 210 mas south of the star with a flux of several percent of the photospheric flux. We estimate a lower limit of the blob temperature of 1000 K. The blob may be related to a mass ejection as found for AGB stars or red supergiants. We also consider the scenario of a companion object. Conclusions: Although there is clear spectro-astrometric evidence of a rather prominent structure near TX Psc, it does not seem to relate to the other evidence of asymmetries, so no definite explanation can be given. Our data thus underline the very complex structure of the environment of this star, but further observations that sample the angular scales out to a few hundred milli-arcseconds are needed to get a clearer picture

    Catching the fish - Constraining stellar parameters for TX Psc using spectro-interferometric observations

    Full text link
    Stellar parameter determination is a challenging task when dealing with galactic giant stars. The combination of different investigation techniques has proven to be a promising approach. We analyse archive spectra obtained with the Short-Wavelength-Spectrometer (SWS) onboard of ISO, and new interferometric observations from the Very Large Telescope MID-infrared Interferometric instrument (VLTI/MIDI) of a very well studied carbon-rich giant: TX Psc. The aim of this work is to determine stellar parameters using spectroscopy and interferometry. The observations are used to constrain the model atmosphere, and eventually the stellar evolutionary model in the region where the tracks map the beginning of the carbon star sequence. Two different approaches are used to determine stellar parameters: (i) the 'classic' interferometric approach where the effective temperature is fixed by using the angular diameter in the N-band (from interferometry) and the apparent bolometric magnitude; (ii) parameters are obtained by fitting a grid of state-of-the-art hydrostatic models to spectroscopic and interferometric observations. We find a good agreement between the parameters of the two methods. The effective temperature and luminosity clearly place TX Psc in the carbon-rich AGB star domain in the H-R-diagram. Current evolutionary tracks suggest that TX Psc became a C-star just recently, which means that the star is still in a 'quiet' phase compared to the subsequent strong-wind regime. This is in agreement with the C/O ratio being only slightly larger than 1.Comment: 11 pages, 9 figures, 5 table

    Detection of a very bright optical flare from a gamma-ray burst at redshift 6.29

    Full text link
    In this letter we discuss the flux and the behavior of the bright optical flare emission detected by the 25 cm TAROT robotic telescope during the prompt high-energy emission and the early afterglow. We combine our data with simultaneous observations performed in X-rays and we analyze the broad-band spectrum. These observations lead us to emphasize the similarity of GRB 050904 with GRB 990123, a remarkable gamma-ray burst whose optical emission reached 9th magnitude. While GRB 990123 was, until now, considered as a unique event, this observation suggests the existence of a population of GRBs which have very large isotropic equivalent energies and extremely bright optical counterparts. The luminosity of these GRBs is such that they are easily detectable through the entire universe. Since we can detect them to very high redshift even with small aperture telescopes like TAROT, they will constitute powerful tools for the exploration of the high-redshift Universe and might be used to probe the first generation of stars.Comment: 9 pages, 3 figures. Accepted in ApJ

    Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations

    Full text link
    The ANTARES telescope has the opportunity to detect transient neutrino sources, such as gamma-ray bursts, core-collapse supernovae, flares of active nuclei... To enhance the sensitivity to these sources, we have developed a new detection method based on the optical follow-up of "golden" neutrino events such as neutrino doublets coincident in time and space or single neutrinos of very high energy. The ANTARES Collaboration has therefore implemented a very fast on-line reconstruction with a good angular resolution. These characteristics allow to trigger an optical telescope network; since February 2009. ANTARES is sending alert trigger one or two times per month to the two 25 cm robotic telescope of TAROT. This follow-up of such special events would not only give access to the nature of the sources but also improves the sensitivity for transient neutrino sources.Comment: 3 pages, 3 figures, Proceedings of the 31st ICRC, Lodz, Polan, July 200

    Continuous optical monitoring during the prompt emission of GRB 060111B

    Full text link
    We present the time-resolved optical emission of GRB 060111B during its prompt phase, measured with the TAROT robotic observatory. This is the first time that the optical emission from a gamma-ray burst has been continuously monitored with a temporal resolution of a few seconds during the prompt gamma-ray phase. The temporal evolution of the prompt optical emission at the level of several seconds is used to provide a clue to the origin of this emission. The optical emission was found to decay steadily from our first measure, 28s after the trigger, in contrast to the gamma-ray emission, which exhibits strong variability at the same time. This behaviour strongly suggests that the optical emission is due to the reverse shock

    Toward an optimal search strategy of optical and gravitational wave emissions from binary neutron star coalescence

    Full text link
    Observations of an optical source coincident with gravitational wave emission detected from a binary neutron star coalescence will improve the confidence of detection, provide host galaxy localisation, and test models for the progenitors of short gamma ray bursts. We employ optical observations of three short gamma ray bursts, 050724, 050709, 051221, to estimate the detection rate of a coordinated optical and gravitational wave search of neutron star mergers. Model R-band optical afterglow light curves of these bursts that include a jet-break are extrapolated for these sources at the sensitivity horizon of an Advanced LIGO/Virgo network. Using optical sensitivity limits of three telescopes, namely TAROT (m=18), Zadko (m=21) and an (8-10) meter class telescope (m=26), we approximate detection rates and cadence times for imaging. We find a median coincident detection rate of 4 yr^{-1} for the three bursts. GRB 050724 like bursts, with wide opening jet angles, offer the most optimistic rate of 13 coincident detections yr^{-1}, and would be detectable by Zadko up to five days after the trigger. Late time imaging to m=26 could detect off-axis afterglows for GRB 051221 like bursts several months after the trigger. For a broad distribution of beaming angles, the optimal strategy for identifying the optical emissions triggered by gravitational wave detectors is rapid response searches with robotic telescopes followed by deeper imaging at later times if an afterglow is not detected within several days of the trigger.Comment: 6 pages, 1 figure, Accepted for publication in MNRAS Letters (2011 April 22

    Early optical observations of GRBs by the TAROT telescopes: period 2001-2008

    Full text link
    The TAROT telescopes (Telescopes a Action Rapide pour les Objets Transitoires) are two robotic observatories designed to observe the prompt optical emission counterpart and the early afterglow of gamma ray bursts (GRBs). We present data acquired between 2001 and 2008 and discuss the properties of the optical emission of GRBs, noting various interesting results. The optical emission observed during the prompt GRB phase is rarely very bright: we estimate that 5% to 20% of GRBs exhibit a bright optical flash (R<14) during the prompt gamma-ray emission, and that more than 50% of the GRBs have an optical emission fainter than R=15.5 when the gamma-ray emission is active. We study the apparent optical brightness distribution of GRBs at 1000 s showing that our observations confirm the distribution derived by other groups. The combination of these results with those obtained by other rapid slewing telescopes allows us to better characterize the early optical emission of GRBs and to emphasize the importance of very early multi-wavelength GRB studies for the understanding of the physics of the ejecta.Comment: 13 pages, 2 color figures, 5 b&w figures. Accepted for publication in Astronomical Journa

    GRB 110205A: Anatomy of a long gamma-ray burst

    Full text link
    The Swift burst GRB 110205A was a very bright burst visible in the Northern hemisphere. GRB 110205A was intrinsically long and very energetic and it occurred in a low-density interstellar medium environment, leading to delayed afterglow emission and a clear temporal separation of the main emitting components: prompt emission, reverse shock, and forward shock. Our observations show several remarkable features of GRB 110205A : the detection of prompt optical emission strongly correlated with the BAT light curve, with no temporal lag between the two ; the absence of correlation of the X-ray emission compared to the optical and high energy gamma-ray ones during the prompt phase ; and a large optical re-brightening after the end of the prompt phase, that we interpret as a signature of the reverse shock. Beyond the pedagogical value offered by the excellent multi-wavelength coverage of a GRB with temporally separated radiating components, we discuss several questions raised by our observations: the nature of the prompt optical emission and the spectral evolution of the prompt emission at high-energies (from 0.5 keV to 150 keV) ; the origin of an X-ray flare at the beginning of the forward shock; and the modeling of the afterglow, including the reverse shock, in the framework of the classical fireball model.Comment: 21 pages, 5 figure (all in colors), accepted for publication in Ap

    The ultra-long GRB 111209A - II. Prompt to afterglow and afterglow properties

    Full text link
    The "ultra-long" Gamma Ray Burst GRB 111209A at redshift z=0.677, is so far the longest GRB ever observed, with rest frame prompt emission duration of ~4 hours. In order to explain the bursts exceptional longevity, a low metallicity blue supergiant progenitor has been invoked. In this work, we further investigate this peculiar burst by performing a multi-band temporal and spectral analysis of both the prompt and the afterglow emission. We use proprietary and publicly available data from Swift, Konus Wind, XMM-Newton, TAROT as well as from other ground based optical and radio telescopes. We find some peculiar properties that are possibly connected to the exceptional nature of this burst, namely: i) an unprecedented large optical delay of 410+/-50 s is measured between the peak epochs of a marked flare observed also in gamma-rays after about 2 ks from the first Swift/BAT trigger; ii) if the optical and X-ray/gamma-ray photons during the prompt emission share a common origin, as suggested by their similar temporal behavior, a certain amount of dust in the circumburst environment should be introduced, with rest frame visual dust extinction of AV=0.3-1.5 mag; iii) at the end of the X-ray "steep decay phase" and before the start of the X-ray afterglow, we detect the presence of a hard spectral extra power law component never revealed so far. On the contrary, the optical afterglow since the end of the prompt emission shows more common properties, with a flux power law decay with index alpha=1.6+/-0.1 and a late re-brightening feature at 1.1 day. We discuss our findings in the context of several possible interpretations given so far to the complex multi-band GRB phenomenology. We also attempt to exploit our results to further constrain the progenitor nature properties of this exceptionally long GRB, suggesting a binary channel formation for the proposed blue supergiant progenitor.Comment: ApJ accepted. Revised version with substantial adjustments, the main results remain unchange
    • …
    corecore