142 research outputs found

    Sensible and latent heat flux from radiometric surface temperatures at the regional scale: methodology and validation

    Get PDF
    The CarboEurope Regional Experiment Strategy (CERES) was designed to develop and test a range of methodologies to assess regional surface energy and mass exchange of a large study area in the south-western part of France. This paper describes a methodology to estimate sensible and latent heat fluxes on the basis of net radiation, surface radiometric temperature measurements and information obtained from available products derived from the Meteosat Second Generation (MSG) geostationary meteorological satellite, weather stations and ground-based eddy covariance towers. It is based on a simplified bulk formulation of sensible heat flux that considers the degree of coupling between the vegetation and the atmosphere and estimates latent heat as the residual term of net radiation. Estimates of regional energy fluxes obtained in this way are validated at the regional scale by means of a comparison with direct flux measurements made by airborne eddy-covariance. The results show an overall good matching between airborne fluxes and estimates of sensible and latent heat flux obtained from radiometric surface temperatures that holds for different weather conditions and different land use types. The overall applicability of the proposed methodology to regional studies is discusse

    The Sky Arrow ERA, an innovative airborne platform to monitor mass, momentum and energy exchange of ecosystems

    Get PDF
    Substantial worldwide efforts are underway aimed at identifying the spatial and temporal distribution of the global sources and sinks of atmospheric carbon dioxide (CO2). The sink/source strength of vegetated surfaces at ground sites can now be estimated with reasonable accuracy and micrometeorological techniques are now well established, while difficulties exist in up scaling these figures to the regional and global scales. Airborne measurement of mass, momentum, and energy fluxes for boundary layer research has been available for decades requiring the use of large aircraft to carry instruments and dedicated support facilities. The advent of compact, lowpower instruments and high speed, high-capacity digital data acquisition systems has recently allowed small research aircraft to perform such measurements with high accuracy. This paper first describes the Sky Arrow ERA (Environmental Research Aircraft), a small research aircraft that has been recently developed in Italy, in the frame of an international scientific collaboration. This aircraft can be operated to measure fluxes of mass, momentum and energy while flying at low altitude and reduced ground speed. The fluxes are computed with the airborne eddy correlation technique. The basic theory at the basis of the flux measurement technique is also described in the paper, and two application examples are discussed to illustrate the quality and the accuracy of the measurements that can be made using this research platform. Potential applications of those data to parametrize land surface schemes, validate simulation models and provide extensive and reliable ground truthing for satellite remote sensing applications are highlighted

    Environmental controls on ozone fluxes in a poplar plantation in Western Europe

    Get PDF
    Tropospheric O-3 is a strong oxidant that may affect vegetation and human health. Here we report on the O-3 fluxes from a poplar plantation in Belgium during one year. Surprisingly, the winter and autumn O-3 fluxes were of similar magnitude to ones observed during most of the peak vegetation development. Largest O-3 uptakes were recorded at the beginning of the growing season in correspondence to a minimum stomatal uptake. Wind speed was the most important control and explained 44% of the variability in the nighttime O-3 fluxes, suggesting that turbulent mixing and the mechanical destruction of O-3 played a substantial role in the O-3 fluxes. The stomatal O-3 uptake accounted for a seasonal average of 59% of the total O-3 uptake. Multiple regression and partial correlation analyses showed that net ecosystem exchange was not affected by the stomatal O-3 uptake. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved

    Simulating carbon exchange using a regional atmospheric model coupled to an advanced land-surface model

    Get PDF
    This paper is a case study to investigate what the main controlling factors are that determine atmospheric carbon dioxide content for a region in the centre of The Netherlands. We use the Regional Atmospheric Modelling System (RAMS), coupled with a land surface scheme simulating carbon, heat and momentum fluxes (SWAPS-C), and including also submodels for urban and marine fluxes, which in principle should include the dominant mechanisms and should be able to capture the relevant dynamics of the system. To validate the model, observations are used that were taken during an intensive observational campaign in central Netherlands in summer 2002. These include flux-tower observations and aircraft observations of vertical profiles and spatial fluxes of various variables. The simulations performed with the coupled regional model (RAMS-SWAPS-C) are in good qualitative agreement with the observations. The station validation of the model demonstrates that the incoming shortwave radiation and surface fluxes of water and CO2 are well simulated. The comparison against aircraft data shows that the regional meteorology (i.e. wind, temperature) is captured well by the model. Comparing spatially explicitly simulated fluxes with aircraft observed fluxes we conclude that in general latent heat fluxes are underestimated by the model compared to the observations but that the latter exhibit large variability within all flights. Sensitivity experiments demonstrate the relevance of the urban emissions of carbon dioxide for the carbon balance in this particular region. The same tests also show the relation between uncertainties in surface fluxes and those in atmospheric concentrations

    Mesoscale modelling of the CO2 interactions between the surface and the atmosphere applied to the April 2007 CERES field experiment

    Get PDF
    This paper describes a numerical interpretation of the April 2007, CarboEurope Regional Experiment Strategy (CERES) campaign, devoted to the study of the CO2 cycle at the regional scale. Four consecutive clear sky days with intensive observations of CO2 concentration, fluxes at the surface and in the boundary layer have been simulated with the Meso-NH mesoscale model, coupled to ISBA-A-gs land surface model. The main result of this paper is to show how aircraft observations of CO2 concentration have been used to identify surface model errors and to calibrate the CO2 driving component of the surface model. In fact, the comparisons between modelled and observed CO2 concentrations within the Atmospheric Boundary Layer (ABL) allow to calibrate and correct not only the parameterization of respired CO2 fluxes by the ecosystem but also the Leaf Area Index (LAI) of the dominating land cover. After this calibration, the paper describes systematic comparisons of the model outputs with numerous data collected during the CERES campaign, in April 2007. For instance, the originality of this paper is the spatial integration of the comparisons. In fact, the aircraft observations of CO2 concentration and fluxes and energy fluxes are used for the model validation from the local to the regional scale. As a conclusion, the CO2 budgeting approach from the mesoscale model shows that the winter croplands are assimilating more CO2 than the pine forest, at this stage of the year and this case study

    Spatio-Temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    Get PDF
    Light-use efficiency (LUE), which quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR ) and derive an estimation of the fraction of APAR (fPAR ) from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (ε ), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR , suggesting the corresponding (ε ) to have less seasonal variation. This spatio-temporal convergence of LUE derived from fPAR can be used to build simple but robust gross primary production models and to better constrain process-based models. chl chl chl max chl max chl chl ch

    an integrated low cost road traffic and air pollution monitoring platform to assess vehicles air quality impact in urban areas

    Get PDF
    Abstract An integrated monitoring platform (IMP) was developed for real-time monitoring of traffic flows and related air pollution in urban areas. The IMP includes: (i) an air quality monitoring unit, integrating the "Arduino" open-source technology with low-cost and high-resolution sensors, to measure air pollutant concentrations; (ii) a traffic monitoring device, equipped with a camera sensor and a video analysis software, to detect vehicles' counts, speed and category; (iii) a spatial data infrastructure, composed of a central GeoDatabase, a GIS engine, and a web interface, for data storage and management. The IMP was tested in Florence (Italy) by installing sensor devices at a road site where a 1-year measuring campaign was carried out. A reference meteorological station in the city centre was used to provide observations of wind speed and direction, air temperature, and relative humidity. In this work, a statistical analysis was performed to investigate the influence of local road traffic and meteorological conditions on CO, NO2 and CO2 concentrations. Two different methods were applied: a linear regression model and an artificial neural network. To investigate the role played by emissions from road traffic, the influence of all drivers by period of the year (cold vs. warm months) and day of the week (weekdays vs. weekends) was analysed. As a result, the contribution of local road traffic on pollutant concentrations proved to be lower than meteorological parameters

    Bridging the gap between atmospheric concentrations and local ecosystem measurements

    Get PDF
    This paper demonstrates that atmospheric inversions of CO<sub>2</sub> are a reliable tool for estimating regional fluxes. We compare results of an inversion over 18 days and a 300 x 300 km 2 domain in southwest France against independent measurements of fluxes from aircraft and towers. The inversion used concentration measurements from 2 towers while the independent data included 27 aircraft transects and 5 flux towers. The inversion reduces the mismatch between prior and independent fluxes, improving both spatial and temporal structures. The present mesoscale atmospheric inversion improves by 30% the CO<sub>2</sub> fluxes over distances of few hundreds of km around the atmospheric measurement locations. Citation: Lauvaux, T., et al. (2009), Bridging the gap between atmospheric concentrations and local ecosystem measurements, Geophys. Res. Lett., 36, L19809, doi: 10.1029/2009GL039574
    corecore