2,385 research outputs found

    Concurrent System Engineering and Risk Reduction for Dual-Band (RF/optical) Spacecraft Communications

    Get PDF
    This paper describes a system engineering approach to examining the potential for combining elements of a deep-space RF and optical communications payload, for the purpose of reducing the size, weight and power burden on the spacecraft and the mission. Figures of merit and analytical methodologies are discussed to conduct trade studies, and several potential technology integration strategies are presented. Finally, the NASA Integrated Radio and Optical Communications (iROC) project is described, which directly addresses the combined RF and optical approach

    The first Frontier Fields cluster: 4.5{\mu}m excess in a z~8 galaxy candidate in Abell 2744

    Full text link
    We present in this letter the first analysis of a z~8 galaxy candidate found in the Hubble and Spitzer imaging data of Abell 2744, as part of the Hubble Frontier Fields legacy program. We applied the most commonly-used methods to select exceptionally high-z galaxies by combining non-detection and color-criteria using seven HST bands. We used GALFIT on IRAC images for fitting and subtracting contamination of bright nearby sources. The physical properties have been inferred from SED-fitting using templates with and without nebular emission. This letter is focussed on the brightest candidate we found (mF160W_{F160W}=26.2) over the 4.9 arcmin2^2 field of view covered by the WFC3. It shows a non-detection in the ACS bands and at 3.6{\mu}m whereas it is clearly detected at 4.5{\mu}m with rather similar depths. This break in the IRAC data could be explained by strong [OIII]+H{\beta} lines at z~8 which contribute to the 4.5{\mu}m photometry. The best photo-z is found at z~8.0−0.5+0.2^{+0.2}_{-0.5}, although solutions at low-redshift (z~1.9) cannot be completely excluded, but they are strongly disfavoured by the SED-fitting work. The amplification factor is relatively small at {\mu}=1.49±\pm0.02. The Star Formation Rate in this object is ranging from 8 to 60 Mo/yr, the stellar mass is in the order of M⋆_{\star}=(2.5-10) x 109^{9}Mo and the size is r~0.35±\pm0.15 kpc. This object is one of the first z~8 LBG candidates showing a clear break between 3.6{\mu}m and 4.5{\mu}m which is consistent with the IRAC properties of the first spectroscopically confirmed galaxy at a similar redshift. Due to its brightness, the redshift of this object could potentially be confirmed by near infrared spectroscopy with current 8-10m telescopes. The nature of this candidate will be revealed in the coming months with the arrival of new ACS and Spitzer data, increasing the depth at optical and near-IR wavelengths.Comment: 4 pages, 2 figures, Accepted for publication in Astronomy and Astrophysics Letter

    COMPLEMENTARITY BETWEEN <i>IN SITU</i> STUDIES AND PHOTOGRAMMETRY: METHODOLOGICAL FEEDBACK FROM A ROMAN SHIPWRECK IN CAESAREA, ISRAEL

    Get PDF
    As a quick and effective way to archive the different stages of an excavation - notably to prepare the post-excavation phase and to document the production methods – photogrammetry has become an indispensable tool. Indeed, it offers a valid scientific model, usable by any member of the team and at any moment, without the need to return to the excavation site. Photogrammetry can also complement other archaeological tools such as manual surveys. The interaction between the complementary approach of the interpretative drawing measurements (IDM) and the photogrammetric model measurements (PMM) enables us to apprehend the error rate of the interpretative measurements in situ. It appears thus that the measurements taken flat have an error rate inferior to 2% whereas the distances that are either too long or taken on a three-dimensional support have an error rate that can exceed 10%. The input of photogrammetry is therefore an added value whether it be during the excavation phase or during the post-excavation studies

    Biomass and nutrient dynamics associated with slash fires in neotropical dry forests

    Get PDF
    Unprecedented rates of deforestation and biomass burning in tropical dry forests are dramatically influencing biogeochemical cycles, resulting in resource depletion, declines in biodiversity, and atmospheric pollution. We quantified the effects of defores- tation and varying levels of slash-fire severity on nutrient losses and redistribution in a second-growth tropical dry forest ("Caatinga") near Serra Talhada, Pernambuco, Brazil. Total aboveground biomass prior to burning was 74 Mg/ha. Nitrogen and phosphorus concentrations were highest in litter, leaves attached to slash, and fine wood debris (<0.64 cm diameter). While these components comprised only 30% of the prefire aboveground biomass, they accounted for -60% of the aboveground pools of N and P. Three experi- mental fires were conducted during the 1989 burning season. In these treatments con- sumption was 78, 88, and 95% of the total aboveground biomass. As much as 96% of the prefire aboveground N and C pools and 56% of the prefire aboveground P pool was lost during combustion processes. Nitrogen losses exceeded 500 kg/ha and P losses exceeded 20 kg/ha in the fires of the greatest severity. With increasing fire severity, the concentrations of N and P in ash decreased while the concentration of Ca increased. This indicates greater amounts of these nutrients were volatilized (i.e., greater ecosystem losses occurred) with increasing fire severity. Following fire, up to 47% of the residual aboveground N and 84% of the residual aboveground P were in the form of ash, which was quickly lost from the site via wind erosion. Fires appeared to have a minor immediate effect on total N, C, or P in the soils. However, soils in forests with no history of cultivation had significantly higher concentrations of C and P than second-growth forests. Based upon the measured losses of nutrients from these single slash-burning events, it would likely require a century or more of fallow for reaccumulation to occur. However, current fallow periods in this region are 15 yr or less

    Why, what, and how? case study on law, risk, and decision making as necessary themes in built environment teaching

    Get PDF
    The paper considers (and defends) the necessity of including legal studies as a core part of built environment undergraduate and postgraduate curricula. The writer reflects upon his own experience as a lawyer working alongside and advising built environment professionals in complex land remediation and site safety management situations in the United Kingdom and explains how themes of liability, risk, and decision making can be integrated into a practical simulation in order to underpin more traditional lecture-based law teaching. Through reflection upon the writer's experiments with simulation-based teaching, the paper suggests some innovations that may better orientate law teaching to engage these themes and, thereby, enhance the relevance of law studies to the future needs of built environment professionals in practice.</p

    ALMA Observations of Gas-Rich Galaxies in z~1.6 Galaxy Clusters: Evidence for Higher Gas Fractions in High-Density Environments

    Get PDF
    We present ALMA CO (2-1) detections in 11 gas-rich cluster galaxies at z~1.6, constituting the largest sample of molecular gas measurements in z>1.5 clusters to date. The observations span three galaxy clusters, derived from the Spitzer Adaptation of the Red-sequence Cluster Survey. We augment the >5sigma detections of the CO (2-1) fluxes with multi-band photometry, yielding stellar masses and infrared-derived star formation rates, to place some of the first constraints on molecular gas properties in z~1.6 cluster environments. We measure sizable gas reservoirs of 0.5-2x10^11 solar masses in these objects, with high gas fractions and long depletion timescales, averaging 62% and 1.4 Gyr, respectively. We compare our cluster galaxies to the scaling relations of the coeval field, in the context of how gas fractions and depletion timescales vary with respect to the star-forming main sequence. We find that our cluster galaxies lie systematically off the field scaling relations at z=1.6 toward enhanced gas fractions, at a level of ~4sigma, but have consistent depletion timescales. Exploiting CO detections in lower-redshift clusters from the literature, we investigate the evolution of the gas fraction in cluster galaxies, finding it to mimic the strong rise with redshift in the field. We emphasize the utility of detecting abundant gas-rich galaxies in high-redshift clusters, deeming them as crucial laboratories for future statistical studies.Comment: 8 pages, 3 figures, published in ApJ Letters; updated to match published versio

    Sampling Local Fungal Diversity in an Undergraduate Laboratory using DNA Barcoding

    Get PDF
    Traditional methods for fungal species identification require diagnostic morphological characters and are often limited by the availability of fresh fruiting bodies and local identification resources. DNA barcoding offers an additional method of species identification and is rapidly developing as a critical tool in fungal taxonomy. As an exercise in an undergraduate biology course, we identified 9 specimens collected from the Hendrix College campus in Conway, Arkansas, USA to the genus or species level using morphology. We report that DNA barcoding targeting the internal transcribed spacer (ITS) region supported several of our taxonomic determinations and we were able to contribute 5 ITS sequences to GenBank that were supported by vouchered collection information. We suggest that small-scale barcoding projects are possible and that they have value for documenting fungal diversity

    Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops

    Get PDF
    Establishment of cell polarity-or symmetry breaking-relies on local accumulation of polarity regulators. Although simple positive feedback is sufficient to drive symmetry breaking, it is highly sensitive to stochastic fluctuations typical for living cells. Here, by integrating mathematical modelling with quantitative experimental validations, we show that in the yeast Saccharomyces cerevisiae a combination of actin- and guanine nucleotide dissociation inhibitor-dependent recycling of the central polarity regulator Cdc42 is needed to establish robust cell polarity at a single site during yeast budding. The guanine nucleotide dissociation inhibitor pathway consistently generates a single-polarization site, but requires Cdc42 to cycle rapidly between its active and inactive form, and is therefore sensitive to perturbations of the GTPase cycle. Conversely, actin-mediated recycling of Cdc42 induces robust symmetry breaking but cannot restrict polarization to a single site. Our results demonstrate how cells optimize symmetry breaking through coupling between multiple feedback loops

    Planck's Dusty GEMS: Gravitationally lensed high-redshift galaxies discovered with the Planck survey

    Get PDF
    We present an analysis of 11 bright far-IR/submm sources discovered through a combination of the Planck survey and follow-up Herschel-SPIRE imaging. Each source has a redshift z=2.2-3.6 obtained through a blind redshift search with EMIR at the IRAM 30-m telescope. Interferometry obtained at IRAM and the SMA, and optical/near-infrared imaging obtained at the CFHT and the VLT reveal morphologies consistent with strongly gravitationally lensed sources. Additional photometry was obtained with JCMT/SCUBA-2 and IRAM/GISMO at 850 um and 2 mm, respectively. All objects are bright, isolated point sources in the 18 arcsec beam of SPIRE at 250 um, with spectral energy distributions peaking either near the 350 um or the 500 um bands of SPIRE, and with apparent far-infrared luminosities of up to 3x10^14 L_sun. Their morphologies and sizes, CO line widths and luminosities, dust temperatures, and far-infrared luminosities provide additional empirical evidence that these are strongly gravitationally lensed high-redshift galaxies. We discuss their dust masses and temperatures, and use additional WISE 22-um photometry and template fitting to rule out a significant contribution of AGN heating to the total infrared luminosity. Six sources are detected in FIRST at 1.4 GHz. Four have flux densities brighter than expected from the local far-infrared-radio correlation, but in the range previously found for high-z submm galaxies, one has a deficit of FIR emission, and 6 are consistent with the local correlation. The global dust-to-gas ratios and star-formation efficiencies of our sources are predominantly in the range expected from massive, metal-rich, intense, high-redshift starbursts. An extensive multi-wavelength follow-up programme is being carried out to further characterize these sources and the intense star-formation within them.Comment: A&A accepte
    • 

    corecore