1,045 research outputs found

    An analysis of the fluctuation potential in the modified Poisson-Boltzmann theory for restricted primitive model electrolytes

    Full text link
    An approximate analytical solution to the fluctuation potential problem in the modified Poisson-Boltzmann theory of electrolyte solutions in the restricted primitive model is presented. The solution is valid for all inter-ionic distances, including contact values. The fluctuation potential solution is implemented in the theory to describe the structure of the electrolyte in terms of the radial distribution functions, and to calculate some aspects of thermodynamics, viz., configurational reduced energies, and osmotic coefficients. The calculations have been made for symmetric valence 1:1 systems at the physical parameters of ionic diameter 4.25×10104.25 \times 10^{-10} m, relative permittivity 78.5, absolute temperature 298 K, and molar concentrations 0.1038, 0.425, 1.00, and 1.968. Radial distribution functions are compared with the corresponding results from the symmetric Poisson-Boltzmann, and the conventional and modified Poisson-Boltzmann theories. Comparisons have also been done for the contact values of the radial distributions, reduced configurational energies, and osmotic coefficients as functions of electrolyte concentration. Some Monte Carlo simulation data from the literature are also included in the assessment of the thermodynamic predictions. Results show a very good agreement with the Monte Carlo results and some improvement for osmotic coefficients and radial distribution functions contact values relative to these theories. The reduced energy curve shows excellent agreement with Monte Carlo data for molarities up to 1 mol/dm3^{3}.Comment: 16 pages, 8 figures, 3 table

    Quantification of magma ascent rate through rockfall monitoring at the growing/collapsing lava dome of Volcán de Colima, Mexico

    Get PDF
    International audienceThe most recent eruptive phase of Volc'an de Colima, Mexico, started in 1998 and was characterized by dome growth with a variable effusion rate, interrupted intermittently by explosive eruptions. Between November 2009 and June 2011, activity at the dome was mostly limited to a lobe on the western side where it had previously started overflowing the crater rim, leading to the generation of rockfall events. As a consequence of this, no significant increase in dome volume was perceivable and the rate of magma ascent, a crucial parameter for volcano monitoring and hazard assessment could no longer be quantified via measurements of the dome's dimensions. Here, we present alternative approaches to quantify the magma ascent rate. We estimate the volume of individual rockfalls through the detailed analysis of sets of photographs (before and after individual rockfall events). The relationship between volume and infrared images of the freshly exposed dome surface and the seismic signals related to the rockfall events were then investigated. Larger rockfall events exhibited a correlation between its previously estimated volume and the surface temperature of the freshly exposed dome surface, as well as the mean temperature of rockfall mass distributed over the slope. We showed that for larger events, the volume of the rockfall correlates with the maximum temperature of the newly exposed lava dome as well as a proxy for seismic energy. It was therefore possible to calibrate the seismic signals using the volumes estimated from photographs and the count of rockfalls over a certain period was used to estimate the magma extrusion flux for the period investigated. Over the course of the measurement period, significant changes were observed in number of rockfalls, rockfall volume and hence averaged extrusion rate. The extrusion rate was not constant: it increased from 0.008±0.003 to 0.02±0.007m3 s−1 during 2010 and dropped down to 0.008±0.003m3 s−1 again in March 2011. In June 2011, magma extrusion had come to a halt. The methodology presented represents a reliable tool to constrain the growth rate of domes that are repeatedly affected by partial collapses. There is a good correlation between thermal and seismic energies and rockfall volume. Thus it is possible to calibrate the seismic records associated with the rockfalls (a continuous monitoring tool) to improve volcano monitoring at volcanoes with active dome growth

    Atherosclerosis of the ascending aorta is a predictor of renal dysfunction after cardiac operations

    Get PDF
    AbstractObjectives: Renal dysfunction occurring after cardiac operations has been attributed to various factors, but the importance of an atherosclerotic thoracic aorta has not been previously evaluated. The purpose of this study was to identify predictors of postoperative renal dysfunction (50% or more increase from preoperative values) and to evaluate the importance of atherosclerosis of the ascending aorta as a predictor of this complication. Methods: Nine hundred seventy-eight consecutive patients, 50 years of age and older with normal preoperative renal function (serum creatinine level of 1.5 mg/dL or less), who were scheduled to undergo cardiac surgery were prospectively evaluated. Atherosclerosis of the ascending aorta was assessed during the operation (with epiaortic ultrasound), and patients were divided into 3 groups according to its severity (normal-to-mild, moderate, and severe). Results: Univariate predictors of renal dysfunction at postoperative day 1 were atherosclerosis of the ascending aorta (P < .045) and postoperative low cardiac output (P = .05); at postoperative day 6 they were atherosclerosis of the ascending aorta (P < .0001), postoperative low cardiac output (P < .0001), advanced age (P = .001), decreased preoperative left ventricular function (P = .01), and female gender (P = .03). Multivariate analysis showed that atherosclerosis of the ascending aorta (odds ratio, 3.06; P = .04) was the only independent predictor of postoperative renal dysfunction at day 1 and that postoperative low cardiac output (odds ratio, 4.83; P < .0001), atherosclerosis of the ascending aorta (odds ratio, 2.13; P = .0006), and preoperative left ventricular dysfunction (odds ratio, 1.48; P = .028) were independent predictors of postoperative renal dysfunction at day 6. Conclusions: An atherosclerotic ascending aorta is an important predictor of postoperative renal dysfunction, possibly because atheroembolism to the kidneys occurs in the perioperative period (ie, during surgical manipulation of an atherosclerotic aorta) or because the diseased aorta may be a marker of widespread atherosclerotic disease that may predispose to perioperative renal dysfunction. (J Thorac Cardiovasc Surg 1999;117:111-6

    Theory of the optical absorption of light carrying orbital angular momentum by semiconductors

    Get PDF
    We develop a free-carrier theory of the optical absorption of light carrying orbital angular momentum (twisted light) by bulk semiconductors. We obtain the optical transition matrix elements for Bessel-mode twisted light and use them to calculate the wave function of photo-excited electrons to first-order in the vector potential of the laser. The associated net electric currents of first and second-order on the field are obtained. It is shown that the magnetic field produced at the center of the beam for the =1\ell=1 mode is of the order of a millitesla, and could therefore be detected experimentally using, for example, the technique of time-resolved Faraday rotation.Comment: Submitted to Phys. Rev. Lett. (23 Jan 2008

    Eruption of Shallow Crystal Cumulates during Explosive Phonolitic Eruptions on Tenerife, Canary Islands

    Get PDF
    The recent eruptive history on the island of Tenerife is characterized in part by the presence of zoned phonolitic ignimbrites, some of which prominently display two types of juvenile clasts (i.e. light-colored, aphyric pumices alongside darker, more crystal-rich pumices, here dubbed ‘crystal-poor' and ‘crystal-rich', respectively). Petrographic observation of the crystal-rich pumices reveals intensely resorbed and intergrown mineral textures, consistent with the system reaching a high crystallinity, followed by perturbation and remobilization prior to eruption. Some trace elements show anomalous concentrations in such crystal-rich pumices (e.g. bulk Ba > 2000 ppm alongside low Zr and a positive Eu anomaly) indicative of crystal accumulation (of feldspar ± biotite). Many biotite and feldspar crystals are reversely zoned, with rim concentrations that are high in Ba but low in Sr, implying crystallization from an ‘enriched' melt, potentially derived from remobilization by partial melting of the aforementioned cumulate zones. Given (1) the presence of cumulates in the eruptive record on Tenerife and a bimodality of pumice textures, (2) the presence of three dominant compositions (basanite, phonotephrite, phonolite, separated by compositional gaps) in the volcanic record, and (3) abundant support for crystal fractionation as the dominant drive for magmatic evolution in Tenerife, it is hypothesized that crystal-poor magmas are extracted from mushy reservoirs in both the lower and upper crust. The thermodynamic software MELTS is used to test a polybaric differentiation model whereby phonolites (sensu lato) are generated by extraction of residual liquids from an intermediate-crystallinity phonotephritic mush in the upper crust, which is in turn generated from the residual liquids of an intermediate-crystallinity basanitic mush at deeper levels. Latent heat spikes following crystallization of successive phases in the upper crustal reservoir provide a thermal buffering mechanism to slow down cooling and crystallization, permitting enhanced melt extraction at a particular crystallinity interval (mostly ∼40-60 vol. % crystals). MELTS modeling typically fits the observed chemical data adequately, although some major elements (mostly Al2O3) also indicate partial ‘cannibalization' of feldspar along with some magma mixing (and potentially minor crustal contamination

    Alternating Subplinian and phreatomagmatic phases during the construction of a phonolitic maar-diatreme volcano (Caldera del Rey, Tenerife, Canary Islands)

    Get PDF
    The Early Pleistocene, well exposed, Caldera del Rey maar-diatreme volcano, Tenerife, Canary Islands was constructed during a ∼ VEI 4 phonolitic eruption that involved two cycles of magmatic-to-phreatomagmatic activity and resulted in two overlapping craters aligned NE-SW. Magmatic phases fed unsteady Subplinian eruption columns that reached 8–12 km altitude and dispersed tephra to the west and southwest of the volcano and shed pyroclastic density currents. Phreatomagmatic phases, driven by explosive interactions between magma and groundwater, constructed an extensive tephra ring via deposition from ballistic curtains, pyroclastic density currents, and tephra fall. Near-optimal-scaled depth phreatomagmatic explosions (strong and/or shallow) excavated a substantial diatreme beneath the north crater and constructed a substantial tephra ring. This abruptly transitioned to deeper-than-optimal scaled depth explosions (weak and/or deep) that erupted mostly fine ash which was dispersed by dilute pyroclastic density currents and fallout and filled the south crater. At distances of >4 km from the volcano, over a metre of ash and pumice accumulated during the phreatomagmatic phases. The Caldera del Rey volcano provides an instructive study on how interaction between ascending felsic magma and groundwater can modify Subplinian eruptions

    Spatial Evolution of Resonant Harmonic Mode Triads in a Blasius Boundary Layer

    Get PDF
    Blasius boundary layer evolution is studied by means of bicoherence calculations. The layer is acoustically excited at the T-S frequency to provide a controlled transition. Measurements are made using a smooth surface as well as various roughness patterns
    corecore