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ABSTRACT

The recent eruptive history on the island of Tenerife is characterized in part by the presence of

zoned phonolitic ignimbrites, some of which prominently display two types of juvenile clasts (i.e.
light-colored, aphyric pumices alongside darker, more crystal-rich pumices, here dubbed ‘crystal-

poor’ and ‘crystal-rich’, respectively). Petrographic observation of the crystal-rich pumices reveals

intensely resorbed and intergrown mineral textures, consistent with the system reaching a high

crystallinity, followed by perturbation and remobilization prior to eruption. Some trace elements

show anomalous concentrations in such crystal-rich pumices (e.g. bulk Ba> 2000 ppm alongside

low Zr and a positive Eu anomaly) indicative of crystal accumulation (of feldspar 6 biotite). Many

biotite and feldspar crystals are reversely zoned, with rim concentrations that are high in Ba but
low in Sr, implying crystallization from an ‘enriched’ melt, potentially derived from remobilization

by partial melting of the aforementioned cumulate zones. Given (1) the presence of cumulates in

the eruptive record on Tenerife and a bimodality of pumice textures, (2) the presence of three dom-

inant compositions (basanite, phonotephrite, phonolite, separated by compositional gaps) in the

volcanic record, and (3) abundant support for crystal fractionation as the dominant drive for mag-

matic evolution in Tenerife, it is hypothesized that crystal-poor magmas are extracted from mushy
reservoirs in both the lower and upper crust. The thermodynamic software MELTS is used to test a

polybaric differentiation model whereby phonolites (sensu lato) are generated by extraction of re-

sidual liquids from an intermediate-crystallinity phonotephritic mush in the upper crust, which is in

turn generated from the residual liquids of an intermediate-crystallinity basanitic mush at deeper

levels. Latent heat spikes following crystallization of successive phases in the upper crustal reser-

voir provide a thermal buffering mechanism to slow down cooling and crystallization, permitting

enhanced melt extraction at a particular crystallinity interval (mostly �40–60 vol. % crystals).
MELTS modeling typically fits the observed chemical data adequately, although some major

elements (mostly Al2O3) also indicate partial ‘cannibalization’ of feldspar along with some magma

mixing (and potentially minor crustal contamination).
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INTRODUCTION

The generation of large volumes of silicic igneous rocks

seen in the volcanic record remains a controversial

topic in igneous petrology and is essential to our under-

standing of explosive volcanic eruptions. Differentiation

of silicic magmas is a complex physico-chemical

process that may entail partial melting of pre-existing

crustal rocks, fractional crystallization of mafic parents,

or some combination of both (assimilation–fractional

crystallization, AFC; see Taylor, 1980; DePaolo, 1981).

The evidence for each mechanism is often elusive and

controversies surround their relative contributions to

differentiation. At the same time, certain common traits

such as petrographic and chemical zonation in ignim-

brites (Lipman, 1966; Lipman & Mehnert, 1975; Hildreth,

1979; Wolff & Storey, 1984; Wörner & Schmincke, 1984;

Bacon & Druitt, 1988; Bryan, 2006; Deering et al., 2011)

and compositional gaps in volcanic series (Bunsen,

1851; Daly, 1925; Chayes, 1963; Sigurdsson & Sparks,

1981; Brophy, 1991; Freundt-Malecha et al., 2001) occur

prominently and consistently throughout magmatic

provinces around the world. Indeed, the prevalence of

such gaps and chemical zonation in ignimbrites sug-

gests that they are intrinsic to the process of differenti-

ation and can help us shed light on controversies

surrounding the mechanisms of magmatic evolution

(Bachmann & Bergantz, 2004; Dufek & Bachmann, 2010;

Szymanowski et al., 2015).

Petrographic and/or chemical zoning patterns are

prevalent in many ignimbrites on the island of Tenerife

in the Canary Islands (Wolff & Storey, 1984; Wolff, 1985;

Bryan et al., 1998, 2002; Bryan, 2006). In particular,

many units contain two or more varieties of juvenile

clasts, including light-colored aphyric pumices, darker

crystal-rich pumices (here referred to as ‘crystal-poor’

and ‘crystal-rich,’ respectively) as well as composition-

ally banded pumices. One question that arises from

these observations is whether the crystal-rich and crys-

tal-poor pumices are genetically related [see Bachmann

et al. (2014) for such a case], and, if so, whether this

genetic relationship provides a clue to how magmas

evolve on Tenerife. Can this bimodality in crystallinity

be in some ways related to the bulk-rock compositional

gaps that are obvious in the volcanic record?

Geochemical models can be ideally implemented in

provinces that are geochemically and tectonically well
characterized, such as Tenerife (Ablay et al., 1998;

Neumann et al., 1999; Thirlwall et al., 2000; Wiesmaier

et al., 2012). Here, there exists a large geochemical data-

base, a well-defined pyroclastic stratigraphy, a clear

demonstration of compositional gaps, and a relatively

simple geotectonic setting that minimizes the influence

of heterogeneous crustal components on the magmas.
In the event that a genetic relationship between crystal-

rich and crystal-poor juvenile products can be demon-

strated, geochemical modeling (using rhyolite-MELTS;

hereafter referred to simply as MELTS; Gualda et al.,

2012) may provide constraints on the importance of this

genetic process in the overall scheme of magmatic dif-

ferentiation on Tenerife.

GEOLOGICAL SETTING

The Canary Islands lie 750 km west of the Moroccan
coast and represent �20 Myr of hotspot activity (Abdel-

Monem et al., 1971; Schmincke, 1976; Fig. 1). The alka-

line volcanic chain extrudes through transitional

oceanic–continental crust in the east (Fuerteventura and

Lanzarote islands), and through �7 km thick oceanic

crust in the west, all of which are overlain by several
kilometers of Africa-derived sediments (Robertson &

Stillman, 1979; Hoernle, 1998; Ye et al., 1999). Active

seismic tomography on the nearby island of Gran

Canaria indicates that the Moho is located at �15 km

depth relative to sea level (Krastel & Schmincke, 2002)

and geobarometric constraints suggest that magma
pooling at this discontinuity may represent layered

magma reservoirs beneath the Canary Islands (Hoernle

et al., 1991; Ablay et al., 1998; Klügel et al., 2005).

Extensive magmatic differentiation sometimes pro-

duces phonolitic to trachytic eruptions following the ini-

tial shield-building stages (Wolff, 1987; Carracedo,

1999). This is seen most prominently on the islands of
Gran Canaria and Tenerife.

The island of Tenerife is situated near the center of

the archipelago and represents >11�6 Myr of eruptive

history, which began with the eruption of the Teno,

Anaga and Roques del Conde basanitic shields (Fig. 1)

and progressed to more felsic activity at �3 Ma with the
building of the Las Cañadas Volcanic Edifice (LCVE;

Martı́ et al., 1994; Ancochea et al., 1999; Thirlwall et al.,

2000). Whereas the LCVE erupted abundant volumes of

both mafic and felsic products in its early stages, it later

changed to more evolved volcanism (Araña & Brändle,

1969; Bryan et al., 1998; Ancochea et al., 1999), deposit-

ing a sequence of phonolitic ignimbrites and fall de-
posits, which are very well exposed on the southern

flanks of the island (the Bandas del Sur pyroclastic

apron). These have been the focus of numerous strati-

graphic studies (Bryan et al., 1998, 2002; Edgar et al.,

2002; Brown et al., 2003; Bryan, 2006; Edgar et al., 2007;

D�avila-Harris, 2009; D�avila-Harris et al., 2013) and are
the topic of this study. Meanwhile, three radial rift zones

are the sources of voluminous basaltic to phonoteph-

ritic lava flows, which are integral to the construction

and, following overgrowth and lateral collapse, destruc-

tion of parts of the island (Fig. 1; Carracedo, 1994;

Carracedo et al., 2007, 2011).

The later silicic volcanism of the LCVE has been his-
torically subdivided into three eruptive cycles, each sep-

arated by an �100 kyr hiatus and comprising many

subordinate plinian–subplinian eruptions (0–20 km3

dense rock equivalent volume; see Martı́ et al., 1994;

Bryan et al., 1998; Edgar et al., 2007). These eruptions

are spaced tens of thousands of years apart and
typically overlie paleosol horizons. Here, we study

five well-exposed zoned ignimbrites: the Gaviotas
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(1�84 6 0�07 Ma), Enramada (1�661 6 0�02 Ma), Adeje

(1�559 6 0�014 Ma), Arico (0�668 6 0�004 Ma) and El

Abrigo (0�169 6 0�001 Ma) ignimbrites (Bryan et al.,

1998; Huertas et al., 2002; Brown et al., 2003; D�avila-

Harris, 2009; D�avila-Harris et al., 2013).

METHODS

Sampling and database management
Many volcanic units on Tenerife have been extensively

sampled over the last decades by numerous groups

and chemical data are accessible from many sources

(Ridley, 1970; Brändle & Santı́n, 1979; Neumann et al.,

1999; Thirlwall et al., 2000; Nichols, 2001; Edgar et al.,

2002, 2007; Bryan, 2006; Gurenko et al., 2006; D�avila-
Harris, 2009). Whole-rock major and trace element data

for the entire range of Tenerife volcanic products were

obtained from the GEOROC database (Sarbas & Nohl,

2008) in October 2012 and screened to exclude any ana-

lyses below 99 total wt %, totaling 824 analyses. For

simplicity, only a representative subset of these data

are plotted. This subset includes: mafic lavas from

Thirlwall et al. (2000); syenites, banded, mafic and aphy-

ric pumices from Nichols (2001) and Edgar et al. (2007);
crystal-rich pumices and other phonolites from D�avila-

Harris (2009); and crystal-rich and crystal-poor pumices

(this study).

To gain a mineral-scale understanding of magmatic

processes, juvenile clasts were collected during a 2012

field campaign from both the SE and SW Bandas del
Sur pyroclastic apron (Fig. 1; Supplementary Material

S1; supplementary data are available for downloading

at http://www.petrology.oxfordjournals.org) following

the stratigraphy outlined by Brown et al. (2003) and

Fig. 1. Simplified geological map of Tenerife with major geological features: three overlapping basanitic shields (Roques del
Conde, Teno and Anaga) unconformably overlain by products from the Las Cañadas volcano and the Teide–Pico Viejo Complex,
concurrent with rift volcanism. Gaviotas, Enramada, Adeje, Arico and El Abrigo ignimbrites are shown in schematic stratigraphic
order and patterned squares represent sampling locations. Inset: Canary Islands. Modified after Carracedo et al. (2007).
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D�avila-Harris (2009). Five ignimbrites were selected that

feature crystal-rich pumices (the Gaviotas, Enramada,

Adeje, Arico and El Abrigo Formations), and special at-

tention was paid to samples such as unusual juvenile

clasts, along with lighter colored aphyric pumices. In
all, 31 unaltered tephriphonolitic to phonolitic pumices,

representing the five ignimbrites, were chosen for

petrographic studies, and whole-rock and mineral

chemical analysis.

Whole-rock geochemistry
Fused whole-rock XRF beads (1:5 lithium tetraborate

dilution) were prepared and analyzed at ETH Zürich
using a PANalytical Axios wavelength-dispersive X-ray

fluorescence (WD-XRF) spectrometer following a 2 h

devolatilization period at 900�C. Loss on ignition (LOI)

was calculated as the difference between the weight

of the original 1�6 g sample and the sample after

devolatilization.

Mineral and glass major element chemistry
Major element concentrations in feldspar, glass and
biotite were obtained by electron probe microanalysis

(EPMA) at ETH Zürich (JEOL JXA-8200 for feldspar and

glass) and Universität Kiel (JEOL JXA-8900 R for bio-

tite). Standards from the ETH standard library were re-

producible to 0–2 relative wt %. Feldspar, glass and

biotite were analyzed with a 20 mm (feldspar and glass)
or focused (biotite) beam for 20, 20 and 7 s on peaks

and 20, 20 and 15 s for total background, respectively,

using a 15 kV acceleration voltage and 20, 6 and 20 nA

beam current, respectively. Feldspar and biotite ana-

lyses were normalized to 8 and 22 O per formula unit

(respectively) using a Phi-Rho-Z correction scheme and

monitored with the Smithsonian NMNH143965 Kakanui
hornblende and NMNH143966 microcline (Jarosewich

et al., 1980), as well as ETH’s albite, anorthite, clinopyr-

oxene and amphibole secondary standards.

Trace elements
Trace elements and rare earth elements (REE) in feld-

spar, biotite, glass and whole-rock beads were obtained

by laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS) at ETH Zürich. Trace element

abundances in glass were obtained from 100 mm thick

sections for the Enramada, Adeje, Arico and El Abrigo

units, and from epoxy mounts for the Gaviotas unit.

Feldspar was analyzed in the same thin sections as

glass, whereas biotite was analyzed exclusively in grain

mounts owing to its lower modal abundance. For XRF
pills, we used a 193 nm Lambda Physik excimer ArF

laser coupled to a PerkinElmer ELAN 6100 ICP-MS sys-

tem. Analyses were calibrated and drift-corrected using

the NIST-610 synthetic glass standard and blank cor-

rected using a lithium tetraborate blank. Spot sizes

were 90mm (lithium tetraborate blank) and 40mm (sam-
ple), and an average of two or three points were taken

per sample. For mineral and glass analyses, a 193 nm

Resonetics ArF excimer laser paired with a Thermo

Element XR ICP-MS system was utilized. Spot sizes

were 30 mm (biotite), 43mm (glass) and 67mm (feldspar),

typical output energy was 3�5 J cm–2 and the analyses

were standardized and drift-corrected with the NIST-612
synthetic glass standard. Internal calibration was per-

formed using as a secondary standard the SiO2 content

of the USGS GSD-1G synthetic glass standard.

Typical standardization and drift correction proced-

ures consisted of bracketing 30 samples with four pri-

mary standards (NIST-610 or NIST-612; two before and

two after), as well as analyzing one secondary standard
per 30 analyses (GSD-1G for minerals or glass or lith-

ium tetraborate blank for XRF pills). Trace element

abundances were calculated for minerals and glass

using the SiO2 concentrations previously obtained by

EPMA for internal standardization. Whole-rock concen-

trations were calculated with the lithium tetraborate
blank and the SiO2 content previously measured by

WD-XRF. Drift correction and data reduction were car-

ried out with the MATLAB-based SILLS software

(Guillong et al., 2008). Analytical error for single spots is

difficult to quantify, but long-term laboratory reproduci-

bility of homogeneous glass standards yields a preci-
sion significantly better than 5 relative % for elements

with concentrations far above the limit of detection.

RESULTS

Petrography
Crystal-rich phonolitic pumices often include crystal ag-
gregates and contain between 20 and 50% phenocrysts

in thin section with a diverse, intergrown mineral as-

semblage consisting of 50–90% alkali feldspar (Table 1).

Biotite and pyroxene are common and together can

form up to 15% of the mineral assemblage, and less

abundant phases include plagioclase (typically absent

but occasionally> 20%)þ Fe–Ti oxides (magnetite 6 il-
menite forming 1–5%)þhaüyne/sodalite (1–5%)þ
apatite (as inclusions in biotite and pyroxene) 6 titanite

(1–3%) 6 amphibole. Pumices typically have a glassy

groundmass and are 15–60% vesiculated. Microlite con-

tent is usually low, with the exception of the Gaviotas

unit, where feldspar and amphibole microlites form the
majority of the groundmass. Crystal aggregates are

common within crystal-rich pumices, occurring as ei-

ther (1) disaggregated crystals that preserve the shapes

of previously attached crystals, (2) felsic and mafic ag-

gregates measuring <1 mm to 1 cm (Fig. 2a and b), or

(3) large pods of aggregated crystals >1 cm (Fig. 2e and

f; Supplementary Material S2).
Alkali feldspar in crystal-rich pumices ranges from

<100mm to >1 cm, occurs either in crystal clusters or

alone, and commonly shows moderate to severe re-

sorption, embayed textures and patchy zoning (Fig. 2d–

f, Supplementary Material S2). Where resorbed, some

feldspar occasionally shows interstitial recrystallization
of oxides and amphibole, typically alongside wormy

cores visible in backscatter electron (BSE) images
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(Fig. 3c). Reverse zoning is often visible as bright,

Ba-rich rims, typically showing higher anorthite content

(Fig. 3a–c). Large glomerocrysts of feldspar are

common and are sometimes intergrown with bio-

tite 6 haüyne or, less frequently, pyroxenes and oxides
(Fig. 2a–f).

Biotite ranges from 100mm to 2 mm in size, displays

a euhedral to elongated habit and is usually only

slightly (although occasionally severely) resorbed.

Some phenocrysts show wormy resorption patterns

and are often overgrown by fresh rims that appear

much brighter in BSE (Fig. 3d–f). Multiple zones and
zone reversals are most commonly seen in the Arico,

Adeje and El Abrigo units, whereas Enramada and

Gaviotas biotite crystals have relatively simple textures.

Inclusions of apatite, oxides and melt are very common

in biotite.

Other mafic phases (pyroxene, amphibole, Fe–Ti
oxides, apatite, titanite, sulfides) usually show slight re-

sorption with rounded edges, and often occur in small

(<1 mm) aggregates with each other and occasionally

with alkali feldspar or plagioclase (Fig. 2a and b).

Samples from the Gaviotas unit contain abundant mafic

glomerocrysts, whereas in other units their presence is
mostly restricted to mingled mafic bands.

Bulk-rock geochemistry
Crystal-rich and crystal-poor pumices have very similar

major element compositions [i.e. when compared on a
total alkalis–silica (TAS) diagram] and are concordant

with literature data, ranging from 57 to 64 wt % SiO2

and from 11 to 15 wt % total alkali content (Table 2;

Fig. 4). The majority of samples are phonolites or trach-

ytes (sensu stricto) with one mingled sample classified

as a tephriphonolite. They are shown as ‘evolved’ com-
positions in Fig. 5. Crystal-poor pumices are mildly

depleted in MgO, FeO, TiO2 and P2O5 relative to

crystal-rich pumices, but contain comparable amounts

of Al2O3, CaO, MnO, SiO2, Na2O and K2O. There is no

correlation between alkali content and age of sample,

or between alkali content and LOI.

Compared with mafic to intermediate lavas, many
crystal-rich phonolitic pumices are enriched in Ba,

depleted in Sr and display Zr contents that are nega-

tively correlated with Ba (Fig. 5). Crystal-poor pumices

are strongly depleted in both Ba and Sr, and highly en-

riched in Zr (>1000 ppm). Trace element and REE pat-

terns in crystal-poor pumices and syenites (normalized

to primitive mantle; McDonough & Sun, 1995) indicate
depletion in Ba, Sr and Eu alongside enrichment in Rb,

Nb and Zr (Nichols, 2001; Fig. 6) compared with crystal-

rich pumices. Samples described as banded and mafic

pumices by Nichols (2001) and crystal-rich pumices

(this study) are characterized by enrichment in Ba corre-

lated with a positive Eu anomaly and depletion in Zr
(Fig. 6, inset) relative to crystal-poor pumices.

Mineral and glass chemistry
Feldspar
Compositionally zoned alkali feldspar is observed in

BSE images and appears in the Arico, El Abrigo, Adeje

and Gaviotas units, most prominently in the Arico (see

Supplementary Material S3). Most alkali feldspar in this

study is classified as anorthoclase, with composition

An0–10Or10–140Ab60–180 (Table 3; Fig. 7a). El Abrigo feld-

spars are notably Or-rich (anorthoclase–sanidine),
whereas those of the Gaviotas and Adeje are more cal-

cic (anorthoclase–oligoclase). Whereas the majority of

feldspar in the Enramada and Gaviotas units is unzoned

and contains 100–4000 ppm Ba, the Arico, Adeje and El

Abrigo units have subsets of feldspar with >5000 ppm

Ba, which are reversely zoned (high-Ba calcic rims;
Figs 3 and 7b). Feldspar crystals in the Arico and Adeje

units are notable for strong reverse zoning in Ba,

Table 1: Phenocryst modal abundances in petrographic thin sections

Sample: 001 005 007 010 011 015 019 020 029 031 043 047 049* 053 054 055 057

Unit:† Enr Enr Enr Adj Adj Adj Gav Gav Ari Ari Abr Abr Abr Abr Abr Abr Abr
Crystallinity:‡ 15�7 28�2 19�1 26�2 12�8 17�1 31�0 19�6 10�0 10�9 47�2 21�7 17�0 25�8 23�4 40�4 25�1
n: 1286 2131 1881 1749 1892 1988 2105 933 1872 1798 2166 1696 2049 2011 1800 1805 1966
Vesicle %: 51�3 27�5 58�0 49�5 3�2 35�1 17�8 25�2 17�5 42�1 22�7 50�8 27�9 39�0 38�5 26�6 32�9

No. of phx§ 98 436 151 232 235 221 653 137 154 113 791 181 251 316 259 535 336
kspar % 87�8 94�3 83�4 78�9 52�3 85�1 68�8 82�5 78�6 78�8 80�3 89�0 68�1 75�6 84�2 81�5 82�1
plag % — 1�6 3�3 15�1 22�1 — 22�7 3�6 1�3 tr 3�5 — 4�0 — 0�8 — —
px % 1�0 1�6 — 2�2 3�8 10�0 2�0 1�5 5�8 3�5 3�8 3�3 15�5 6�6 3�1 1�3 3�0
bt % 6�1 0�9 9�9 1�3 13�6 0�5 0�8 2�9 7�1 8�0 5�7 1�7 1�6 6�0 3�1 7�1 3�9
haü % — — 0�7 0�4 — — 0�5 — 1�3 4�4 3�0 2�2 0�4 6�6 3�9 1�3 5�1
ap % tr tr — tr 1�7 tr 0�3 5�1 1�3 0�0 tr tr 0�8 — tr 0�9 0�3
ox % 5�1 1�1 2�6 2�2 6�0 3�2 2�6 2�2 4�5 5�3 1�4 3�9 8�0 5�1 5�0 2�2 5�7
tit % — 0�5 — tr 0�4 1�4 0�5 2�2 — tr 2�3 tr 1�6 — tr 5�6 tr
amp % — — — — tr tr 2�0 tr — tr tr — — — — — —

*Very mingled clast.
†Enr, Enramada; Adj, Adeje; Ari, Arico; Abr, El Abrigo; Gav, Gaviota.
‡Crystallinity calculated as proportion of phenocrysts to phenocrysts and groundmass.
§phx, phenocryst; gms, groundmass; kspar, alkali feldspar; plag, plagioclase; px, pyroxene; bt, biotite; haü, haüyne; ap, apatite; ox,
Fe–Ti oxides; tit, titanite; amp, amphibole.
n, number of points counted; tr, phase observed in trace quantities.
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showing rims with up to �15 000 ppm Ba. Sr content is

positively correlated with Ba and is typically <1000 ppm
in all units (<100 ppm in the Enramada), with Arico feld-

spar crystals showing exceptionally low values

(<400 ppm; Fig. 7c).

Biotite
Biotite crystals are often compositionally zoned like the

feldspars, with bright zones visible in BSE images that

are strongly correlated with Ba content (Supplementary

Material S3). All biotite is classified as phlogopite with

Fig. 2. Representative thin section photomicrographs of glomerocrysts from the Gaviotas Formation (a, b, d) and El Abrigo
Formation (c, e, f): (a, b) intergrown alkali feldspar, pyroxene, oxides and biotite 6 apatite (TFE_12_019, 20); (c) intergrown, slightly
resorbed alkali feldspar glomerocryst (TFE_12_055); (d) plagioclase glomerocryst showing variable crystallographic orientations
and partial resorbtion (TFE_12_019); (e) thin section demonstrating partly disaggregated glomerocryst (center; TFE_12_055); (f)
cross-polarized light photomicrograph of pumice with multiple alkali feldspar glomerocrysts (particularly top left, bottom left to bot-
tom right; TFE_12_054). afs, alkali feldspar; pl, plagioclase; px, augite; bt, biotite; ox, oxides; classification following Whitney &
Evans (2010).
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Mg# [Mg/(Mgþ Fe)] from 60 to 76 and low Al

(generally< 2�6 atoms per formula unit and inversely

related to Mg; Table 3; Fig. 8a). Major element zonation

is slight or absent, whereas zonation in Ba is

pronounced in most units, sometimes approaching

25 000 ppm (Figs 3d–f and 8b). Rb varies between 100

and 500 ppm, and is inversely proportional to Ba con-

tent (Fig. 8c).
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Fig. 3. (a–c) Backscattered electron (BSE) images of reversely zoned feldspars from the Arico unit, showing high enrichment in Ba
from core and rim, and associated minor increases in An# and decreases in Or#; (d–f) BSE images of zoned biotite phenocrysts,
showing extreme Ba variations between core and rim, together with a concurrent decrease in Rb. The prominent resorption in
many phenocrysts should be noted. All grains are from sample TFE_12_031.
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Groundmass
The groundmass in crystal-rich pumices is typically

glassy with the exception of the Gaviotas unit, where

feldspar and amphibole microlites make up >95% of

the groundmass. Glass is texturally homogeneous to

slightly microcrystalline in most units and contains

59–64 wt % SiO2, 17–20 wt % Al2O3, 7–11 wt % Na2O,
4�5–6�5 wt % K2O, 2–4 wt % FeO and 0–1 wt % MgO

(Table 3; Fig. 9a). Sr and Ba contents vary widely be-

tween units, with either low-Sr–high-Ba (the Arico unit),

Table 2: Major and trace element bulk-rock XRF data for selected Tenerife ignimbrites

Sample: 001 002 007 009 010 015 017 018 019 020 022 023 023_2 024 031
Unit: Enr Enr Enr Adj Adj Adj Mor Mor Gav Gav Gav Gav Gav Gav Ari
Texture: xr xr xr xr xr xr xp xp xr xr xr xr xr xr xr

Major elements (wt %)
SiO2 62�45 62�87 63�58 62�00 61�17 60�43 63�67 62�02 60�08 58�81 59�11 58�03 58�54 58�98 61�52
TiO2 0�80 0�82 0�82 0�92 1�02 0�87 0�79 0�76 0�85 1�12 1�08 1�13 1�11 1�07 0�85
Al2O3 17�34 17�38 17�73 17�96 17�99 17�49 17�33 16�91 19�10 19�29 19�21 19�24 19�06 19�26 18�29
FeOT* 2�86 2�96 2�90 3�33 3�55 3�06 3�27 3�62 3�05 3�84 3�71 3�82 3�71 3�70 3�10
CaO 0�78 1�49 0�80 1�57 1�98 4�04 1�00 1�33 1�67 3�05 2�78 4�21 3�50 2�93 0�98
MgO 0�63 0�60 0�58 0�98 1�08 0�84 0�56 0�40 0�64 0�98 1�12 1�21 1�11 0�94 0�81
MnO 0�16 0�17 0�16 0�18 0�17 0�17 0�23 0�28 0�18 0�18 0�18 0�18 0�18 0�18 0�21
K2O 5�35 5�43 5�37 4�19 3�99 4�15 5�47 5�32 4�98 4�14 4�30 3�87 4�15 4�30 4�87
Na2O 7�58 7�62 7�78 7�95 7�96 8�11 7�53 8�85 8�31 7�67 7�71 7�47 7�64 7�81 8�91
P2O5 0�17 0�17 0�17 0�22 0�26 0�20 0�08 0�06 0�13 0�23 0�26 0�37 0�30 0�22 0�16
Total 98�4 100�0 100�34 99�7 99�6 100�00 100�49 100�20 99�3 100�08 100�18 99�9 100�01 100�11 100�05
Trace elements (ppm)
Ba 351 222 388 1558 1775 1694 12 52 574 910 832 940 924 799 1578
Sr 10 11 9 239 438 274 15 15 287 633 583 757 612 599 30
Zr 320 371 335 446 386 392 713 1097 1039 775 810 708 750 831 564
Rb 64 71 68 71 62 67 110 142 144 110 112 98 106 115 87
V 27 32 32 29 36 26 34 28 31 52 51 52 53 51 42
Sc 4 3 3 0 3 3 1 4 1 5 5 5 2 1 2
Cr 3 3 1 0 3 2 3 3 3 7 11 1 3 0 1
Co 4 4 2 4 3 0 3 2 4 5 5 10 6 4 2
Ni 6 8 5 16 9 9 9 9 11 7 15 7 8 7 8
Cu 20 6 1 18 28 4 6 6 28 4 8 17 6 5 10
Zn 83 92 87 105 94 99 127 165 105 106 105 102 103 105 115
Y 30 35 32 37 34 35 57 75 46 43 43 40 42 43 37
Nb 86 98 90 108 98 98 183 248 213 171 174 160 166 180 151
La 75 85 83 80 66 71 142 162 116 104 95 88 93 96 118
Hf — 14 12 — — 16 25 36 — 30 30 — 29 29 —
Th 4 8 8 9 6 8 15 23 18 16 16 13 16 18 15
U 0 1 0 1 0 0 3 3 2 1 0 0 0 1 3

Sample: 032 036 043 044 045 046 047 048 049 050 051 053 054 055 057 059 065
Unit: Ari Abr Abr Abr Abr Abr Abr Abr Abr Abr Abr Abr Abr Abr Abr Abr Enr
Texture: xr xr bp xr xp xp xr xr xr xp xr xr xr xr xr xr xp

Major elements (wt %)
SiO2 61�45 59�02 60�05 55�38 57�24 57�73 60�70 60�50 57�30 58�57 60�28 61�40 60�34 59�40 61�43 59�29 63�56
TiO2 0�89 0�89 1�02 1�71 0�61 0�74 0�79 0�86 1�40 0�74 1�08 0�86 0�89 0�75 0�84 0�98 0�60
Al2O3 18�34 18�32 19�07 18�93 20�27 19�73 18�55 18�69 18�36 18�71 18�71 18�56 18�63 18�90 18�59 18�46 16�28
FeOT 3�14 3�08 2�96 5�11 2�88 3�09 2�83 3�10 4�47 3�38 3�47 2�88 3�02 3�14 2�76 3�34 3�47
CaO 1�08 2�16 1�89 4�43 3�65 2�13 1�22 1�60 3�21 2�09 1�96 1�20 1�49 1�50 1�58 2�90 2�53
MgO 0�78 0�73 0�64 1�79 0�74 0�72 0�47 0�58 1�38 0�61 0�90 0�57 0�64 0�41 0�62 0�79 0�48
MnO 0�21 0�18 0�13 0�17 0�18 0�18 0�18 0�19 0�19 0�23 0�17 0�17 0�17 0�22 0�16 0�19 0�28
K2O 4�76 5�11 5�74 4�33 5�49 5�41 5�71 5�47 4�56 5�51 5�05 5�64 5�27 5�66 5�58 5�20 4�90
Na2O 8�96 8�37 7�54 7�19 8�61 8�59 8�56 8�73 7�95 8�94 8�03 8�24 8�37 9�37 8�17 8�46 7�21
P2O5 0�17 0�16 0�14 0�49 0�11 0�13 0�10 0�13 0�35 0�10 0�23 0�14 0�15 0�07 0�13 0�19 0�06
Total 100�12 98�7 99�5 100�47 100�35 99�1 99�6 100�45 100�0 99�3 100�55 100�15 99�6 100�02 100�36 100�44 99�8
Trace elements (ppm)
Ba 1704 1177 1384 1275 263 409 228 566 985 38 1276 451 1102 11 580 868 9
Sr 31 171 234 745 207 245 40 131 479 55 246 52 152 27 68 197 18
Zr 530 693 533 592 1199 1106 709 760 680 1306 547 540 613 1183 511 745 1205
Rb 83 107 98 92 184 178 118 121 99 178 89 94 101 168 91 114 161
V 43 50 61 119 39 49 42 48 86 46 61 44 47 44 42 54 26
Sc 0 2 0 4 0 0 0 2 0 2 2 3 0 1 0 2 2
Cr 4 7 2 7 6 11 4 32 1 9 0 3 6 3 1 0 3
Co 4 3 2 14 1 4 3 0 7 3 3 3 7 1 2 4 4
Ni 6 6 8 22 8 8 2 18 0 14 5 8 4 4 2 8 10
Cu 6 8 6 8 4 5 6 8 7 7 3 3 5 5 6 7 7
Zn 111 104 84 100 113 109 102 107 107 141 99 92 96 132 89 108 132
Y 36 39 47 42 32 35 37 40 42 55 36 33 35 53 32 44 66
Nb 145 158 166 152 200 190 166 177 156 263 130 130 144 254 124 168 265
La 109 97 120 86 105 114 104 119 102 144 97 105 103 145 96 107 186
Hf — — — — — — — — — — 19 — — — — 25 —
Th 10 14 14 14 33 32 20 18 16 32 13 11 15 26 11 18 26
U 2 2 2 0 8 8 5 6 2 7 1 2 3 7 3 1 6

*FeOT denotes total Fe as FeO.
Enr, Enramada; Adj, Adeje; Ari, Arico; Abr, El Abrigo; Gav, Gaviota; Mor, Morteros; Ce, Ga, Nd and Pb analyses excluded owing to
poor standardization; xr, crystal-rich; xp, crystal-poor; bp, banded pumice.
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low-Sr–low-Ba (Enramada and Gaviotas units) or high-
Sr–high-Ba (Adeje and El Abrigo units). Zr and Nb con-

centrations are positively correlated and range from

300 to 1400 ppm and from 100 to 350 ppm, respectively

(Fig. 9b and c).

DISCUSSION

Chemical and textural zoning in ignimbrites
One particularly striking feature of Tenerife ignimbrites

visible in the field is their textural variability, manifested

as the coexistence of aphyric pumices with crystal-rich
pumices (D�avila-Harris, 2009; D�avila-Harris et al., 2013)

along with significant amounts of banded pumice. This

textural characteristic is commonly associated with gra-

dients in chemistry, degree of welding, temperature

and crystallinity throughout the unit (Wolff & Storey,

1984; Wolff, 1985; Bryan, 2006; D�avila-Harris, 2009;
D�avila-Harris et al., 2013). Zoning of this type suggests

a pre-existing internal stratigraphy within the sampled

magma chamber; namely, a relatively aphyric, evolved

cap lying atop a more crystal-rich, but hotter portion

Fig. 4. (a) Bulk-rock TAS diagram for all studied Tenerife units following the classification scheme of Le Bas et al. (1986), showing lit-
erature data (basanites, phonolites and phonotephrites; n¼874; Araña & Brändle, 1969; Ibarrola, 1969; Ridley, 1970; Brändle &
Santı́n, 1979; Ablay et al., 1995, 1998; Neumann et al., 1999; Thirlwall et al., 2000; Wolff et al., 2000; Nichols, 2001; Bryan et al., 2002;
Gurenko et al., 2006; Edgar et al., 2007; D�avila-Harris, 2009) and XRF data from this study. Histogram shows the total number of
analyses per SiO2 bin and schematic trimodal distribution based on the density distribution of samples. (b) Ni (ppm) vs Zr (ppm)
bulk-rock; (c) Sr (ppm) vs Zr (ppm) bulk-rock.
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(Wolff et al., 1990; D�avila-Harris et al., 2013; Evans &

Bachmann, 2013). The eruption first taps the crystal-

poor top and follows by digging into deeper levels of

the magma chamber (more crystal-rich). This scheme

was laid out by Wörner & Schmincke (1984) and has

been observed in many volcanic fields [e.g. it is particu-

larly well documented in the Bishop Tuff (Hildreth,
1979), Crater Lake (Bacon & Druitt, 1988), Ammonia

Tanks Tuff (Bachmann & Bergantz, 2008, and references

therein; Deering et al., 2011), Peach Spring Tuff

(Pamukcu et al., 2013) and Carpenter Ridge Tuff

(Bachmann et al., 2014, and references therein)], com-

monly with some degree of mixing and mingling

between different magma horizons (e.g. Hildreth &

Wilson, 2007).

Crystal-rich and crystal-poor pumices on Tenerife,

although very similar in major element composition

(Fig. 4a), differ dramatically in trace element content.
The difference between pumices becomes most appar-

ent when comparing Ba, Sr, Eu and Zr contents and is

particularly striking in some banded and mafic pumices

(Nichols, 2001). Zr is essentially incompatible in alkaline

magmas (no zircon crystallization) and is here used as

an index of differentiation. In contrast, Ba and Sr in-

crease in the melt in the mafic endmembers until the
point of alkali feldspar or plagioclase saturation, after

which their concentrations decrease dramatically (liquid

line of descent demonstrated in Fig. 5). A careful exam-

ination of the Zr vs Ba trend reveals that many low-Zr

(presumably less evolved) crystal-rich, banded and

‘mafic’ pumices contain Ba concentrations (>3000 ppm)
in excess of what is possible by following the liquid line

of descent (Ablay et al., 1998). More strikingly, these

pumices follow a trajectory away from a fractionation

trend (i.e. Zr below 500 ppm despite the high Ba). It is

unlikely that this trace element signature is due to mix-

ing with tephriphonolite magma, as even the most frac-
tionated magmas contain less than 2000 ppm Ba and

have a high Zr content (�800 ppm; see Bryan et al.,

2002), which is inconsistent with the banded, crystal-

rich pumice chemistry (Fig. 5; Nichols, 2001).

Assimilation of sediments (Hoernle, 1998), material

from the volcanic edifice (Thirlwall et al., 2000) or neph-

eline syenite (Wiesmaier et al., 2012) would also be un-
likely to produce the trends in Ba owing to the low Ba

concentration of each of these reservoirs.

The most likely explanation is that these Ba-rich,

crystal-rich, banded and less evolved pumices repre-

sent remobilized cumulates rich in alkali feldspar and/or

biotite, as these phases strongly partition Ba but not Zr.
REE patterns (Fig. 6) are consistent with such an inter-

pretation, with crystal-rich pumices demonstrating a

positive Eu anomaly indicative of feldspar accumula-

tion, whereas crystal-poor pumices show a negative

anomaly indicative of feldspar fractionation. The crys-

tal-rich clasts are therefore interpreted as portions of a

remobilized feldspar-dominated cumulate, an interpret-
ation supported by Ablay et al. (1998) for some Ba-rich

volcanic rocks reported in their study. Crystal-poor

clasts, on the other hand, characterized by low Ba and

high Zr (Fig. 5), can be interpreted primarily as highly

fractionated residual melts from which feldspar and bio-

tite have been removed.
If crystal-rich pumices do contain partially remobi-

lized cumulates, then we should expect that petro-

graphic textures will reflect this. Indeed, crystal-rich

pumices with 20–50% phenocrysts often exhibit inter-

grown mineral textures or isolated glomerocrysts (Fig.

2), suggesting restricted growth in a high-crystallinity

environment. Frequent severe resorption and embayed
textures in feldspar indicate strong mineral–melt dis-

equilibrium prior to eruption, and mingling between

Fig. 5. Bulk-rock Ba vs Zr (a) and Sr vs Zr (b) for the samples
from this study, demonstrating: (1) the differences between
crystal-poor (xp) and crystal-rich (xr) pumices in terms of Ba
content and (2) a clear deviation from the calculated liquid line
of descent (LLOD; inset), possibly owing to feldspar accumula-
tion. LLOD calculated with the AFC equation Cl/Ci¼F–zþ [r/
(r – 1)]� (Ca/Coz)� (1 – F–z) (DePaolo, 1981) using MELTS
phenocryst modal abundances, AN31 basanitic starting com-
position (0�3% H2O) and the partition coefficients of Villemant
(1988). The hypothetical assimilant (Ca) is a feldspar that con-
tains 5000 ppm Ba, 500 ppm Sr and 0 ppm Zr. The term r repre-
sents the ratio of assimilation to crystallization. Literature
Tenerife whole-rock data are shown for comparison (Thirlwall
et al., 2000; Nichols, 2001; D�avila-Harris, 2009). Inset: schematic
deviation toward high Ba and low Zr values is indicative of feld-
spar and biotite accumulation.
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phonolitic glass and a more mafic component in the

phonolitic samples suggests that a recharge event may
have been responsible for this disequilibrium. The pres-

ence of mingled pumices in many units (e.g. El Abrigo;

Arico) has previously been cited as evidence for mafic

magma injection and mixing in the chamber immedi-

ately prior to eruption (Wolff, 1985; Araña et al., 1994;

Bryan et al., 1998, 2002). Some units show evidence of
resorption followed by one or more recrystallization

events, indicating periodic thermal fluxing or recharge

prior to eruption (Fig. 3a–c).

Remobilization of cumulates may take place by

partial melting, mechanical disaggregation or a

combination of the two processes following recharge
(Wörner & Wright, 1984; Burgisser & Bergantz, 2011;

Huber et al., 2011). The latter process can be seen

most clearly among the eruptive products of the

Gaviotas unit, where preservation of crystal aggregates

(anorthoclaseþbiotiteþ augiteþ Fe–Ti oxidesþ apatite 6

titanite 6 amphibole) appears the highest, along with

high Zr contents (>1000 ppm; Fig. 9) and low Ba and Sr
contents (<300 and <50 ppm, respectively) in glass, to-

gether suggesting that these samples represent a cu-

mulate horizon that was mobilized wholesale together

with its interstitial liquid without significant melting.

Thermal remobilization and partial melting, on the other

hand, is most evident in the Arico unit, where aggregate
preservation is low, and feldspar trace element chemis-

try necessitates the creation of an ‘enriched’ melt, as

outlined below.

Compositional zoning in feldspar and biotite pre-

serves a record of the melt composition from which the

mineral crystallized. Zoned feldspar crystals show

minor reverse zoning in An content and extremely Ba-

rich rims with concentrations of up to �15 000 ppm.
This necessitates a Ba host liquid concentration of

�1500 ppm, using a liberal estimate of 10 for KBa
fsp–melt

(Nash & Crecraft, 1985). If intermediate magmas on

Tenerife (using phonotephritic rift lavas as a proxy) are

assumed to provide the recharge, it follows that the

feldspars in question cannot be crystallizing directly
from this melt (which has on average �500 ppm Ba),

but must instead crystallize from pockets of melt locally

enriched in Ba. Rare tephriphonolites have higher Ba

contents and could be the source of the high-Ba min-

erals (Bryan et al., 2002). However, the Sr content of

these melts (�500–1000 ppm) would crystallize feldspar
with 2500–5000 ppm Sr, assuming a KD of five (Wörner

et al., 1983; Nash & Crecraft, 1985; Villemant, 1988). As

Sr content in feldspars is typically <1000 ppm, and in

some cases <400 ppm (Arico; Fig. 7c), this interpret-

ation is precluded. Moreover, those tephriphonolites

are some of the rarest magmas on Tenerife (Fig. 4a).

Zoned biotites also show clear patterns of growth
and regrowth from melts with variable Ba and Rb con-

centrations (Figs 3d–f and 8). All units contain biotite

phenocrysts with Ba-enriched rims, most notably the

Arico and El Abrigo units, where Ba concentration typic-

ally exceeds 20 000 ppm and occasionally approaches

35 000 ppm. Assuming a generous KD of 20 (Villemant,
1988), the concentration of Ba in the melt would need to

be 1000–1500 ppm, which, as previously noted, is ex-

tremely high for most intermediate magmas in

Tenerife. Furthermore, the negative correlation of Rb

and Ba speak against crystallization directly from a re-

charge melt (Fig. 8c). Because Rb and Ba are both

Fig. 6. (a) Bulk-rock trace element patterns of crystal-rich (xr; white; this study), and crystal-poor (xp; red; Nichols, 2001; this study)
phonolites, syenites (blue; Nichols, 2001), and banded pumices and mafic pumices (BP and MP; black; Nichols, 2001 and this study)
normalized to primitive mantle (PM), following McDonough & Sun (1995). Depletions in Ba and enrichment in Zr in xp units relative
to xr and BP/MP units should be noted. Inset: positive correlation of Ba vs Eu anomaly [Eu*¼H(Sm�Gd)]. The low Eu/Eu* in xp
samples and syenites should be noted.
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incompatible in less evolved melts, the two elements

would form a positive correlation in biotite if the biotite
was crystallizing directly from a primitive melt before

feldspar saturation. However, the low Rb associated

with high Ba concentration is consistent with a parent

melt that has been doped with a high-Ba, low-Rb melt.

The generation of such extreme mineral compositions

involves high-Ba feldspar and biotite crystallizing from

pockets of partially melted alkali feldspar cumulate or
crystal mush following recharge [see Ammonia Tanks

(Deering et al., 2011) and Carpenter Ridge Tuff

(Bachmann et al., 2014) studies for similar

characteristics].

High Ba rims on feldspar have been noted previously

(e.g. Bryan et al., 2002) and paired with observations of
high FeO, TiO2, and/or An content (Triebold et al., 2006;

Andújar et al., 2013). These effects were attributed to a

shift in melt temperature and composition by addition

of a hotter mafic recharge. Here we focus on the Ba zon-

ation in particular, and explicitly assert that this phe-
nomenon is possible only through crystallization from a

melt that has been altered by the addition of feldspar

partial melt during remobilization of cumulates. This

model is, however, consistent with the involvement of

mafic recharge, as the melting of a feldspar cumulate

requires addition of heat and/or H2O, both obtainable

by recharge [see Wolff et al. (2015) for additional details
on the process].

Compositional gaps in the Tenerife volcanic
series
The number of samples for a given composition varies

considerably in Tenerife, leading to the presence of
compositional peaks and gaps, a feature that was first

noticed decades ago (Fig. 4; Chayes, 1963; e.g. Ridley,

Table 3: Representative feldspar, biotite and glass compositions

Feldspar Glass

Unit: Enramada Gaviotas Arico Adeje El Abrigo Enramada Gaviotas Arico Adeje El Abrigo

Sample: 007 019 031
(rim)

031
(core)

015
(rim)

015
(core)

043
(rim)

043
(core)

007 019 031 015 043

SiO2 65�96 62�57 65�15 66�61 64�52 66�17 62�13 62�06 60�66 58�03 59�52 59�80 56�62
TiO2 0�09 0�10 0�15 0�10 0�11 0�11 0�13 0�12 0�84 0�97 0�88 0�95 0�87
Al2O3 19�63 21�92 20�23 19�45 20�75 19�83 22�34 22�57 16�88 18�30 17�52 16�99 19�53
FeO 0�36 0�33 0�34 0�37 0�38 0�38 0�37 0�33 2�71 2�85 3�02 3�21 3�31
MgO 0�00 0�00 0�00 0�00 0�01 0�00 0�01 0�00 0�62 0�54 0�66 0�77 0�60
CaO 0�93 3�19 1�09 0�68 1�68 0�90 3�15 4�03 0�69 0�88 0�90 0�95 2�19
Na2O 7�89 8�16 8�53 8�64 8�76 8�85 7�26 7�51 7�59 7�91 8�46 8�15 8�33
K2O 4�60 2�07 3�21 3�76 2�59 3�28 2�90 2�28 5�25 6�21 4�75 4�35 4�89
SrO 0�00 0�14 0�00 0�01 0�09 0�03 0�26 0�11 0�00 0�00 0�00 0�00 0�08
BaO 0�20 0�39 1�11 0�20 0�89 0�33 1�59 0�80 0�05 0�06 0�31 0�13 0�13
Total 99�66 98�87 99�81 99�83 99�78 99�88 100�14 99�81 95�30 95�74 96�02 95�30 96�54
An 0�04 0�16 0�05 0�03 0�08 0�04 0�16 0�20
Or 0�27 0�12 0�19 0�22 0�15 0�19 0�18 0�13
Ab 0�69 0�72 0�76 0�75 0�77 0�77 0�67 0�67

Biotite

Unit: Enramada Gaviotas Arico Adeje El Abrigo Arico (Fig. 3)*

Sample: 001 019 031
(rim)

031
(core)

010
(rim)

010
(core)

043
(rim)

043
(core)

031_5r 031_5c 031_8r 031_8c

SiO2 38�25 37�28 36�00 38�04 37�32 37�80 35�67 37�31 36�56 38�37 35�50 36�5
TiO2 7�30 6�43 8�06 6�35 6�95 6�83 7�12 6�96 7�75 6�26 8�56 7�96
Al2O3 12�84 13�05 13�49 12�95 12�74 12�71 13�95 13�73 13�50 12�89 13�67 13�53
FeO 11�22 13�00 11�34 10�58 10�74 10�74 14�49 13�43 11�06 10�97 11�22 10�94
MgO 16�51 15�26 15�58 17�11 16�88 16�70 13�54 14�39 15�69 17�39 14�92 15�62
MnO 0�35 0�45 0�37 0�40 0�39 0�35 0�38 0�39 0�38 0�34 0�40 0�34
CaO 0�00 0�00 0�01 0�00 0�02 0�00 0�01 0�00 0�00 0�00 0�00 0�00
Na2O 1�17 0�98 1�30 1�32 1�44 1�28 0�91 0�90 1�32 1�25 1�25 1�34
K2O 8�75 9�02 7�48 8�27 8�17 8�29 8�59 9�05 7�80 8�54 7�19 7�58
Cr2O3 0�04 0�02 0�00 0�01 0�01 0�00 0�00 0�00 0�00 0�00 0�04 0�00
Sr (ppm) 0�7 14�5 6�8 0�6 16�2 10�3 36�5 5�7 5�7 0�6 14�2 7�7
Ba (ppm) 917 3120 20307 2413 8048 4714 15513 1739 19838 1138 34541 22307
Rb (ppm) 139 302 146 225 149 166 201 248 153 255 128 148
Total† 96�42 95�89 93�62 95�03 94�65 94�70 94�66 96�16 94�06 96�01 92�75 93�81
Mg# 72�4 67�7 71�0 74�2 73�7 73�5 62�5 65�6 71�7 73�9 70�3 71�8

*Compositions of biotites shown in Fig. 3.
†Totals do not include trace elements.
c, core, r, rim; all oxides wt % unless otherwise noted.
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1970; Wolff & Storey, 1984; Bryan et al., 2002;

Wiesmaier et al., 2012). As previous studies have

strongly suggested that magmatic differentiation is

dominated by fractionation from mafic parents (Wolff &

Palacz, 1989; Ablay et al., 1998; Neumann et al., 1999;

Bryan et al., 2002), such gaps can be explained by
crystal–melt separation from crystal mushes at inter-

mediate crystallinities (mechanical control on phase

separation; Dufek & Bachmann, 2010). We have tested

this hypothesis for Tenerife magmas, and use thermo-

dynamic modeling (rhyolite-MELTS) to try to reproduce

the observed compositional gaps on Tenerife.

Whole-rock data from Tenerife (using compiled data

from the GEOROC database) demonstrate a clear trimo-

dality in chemical composition, suggesting that mag-
matic processes preferentially release distinct

compositions (Fig. 4a). A histogram paired with a TAS

diagram (Le Bas et al., 1986) allows identification of (1)

Fig. 7. (a) Feldspar endmember compositions, calculated as molar proportions of Ca, Na or K to (CaþNaþK), denoted An, Ab and
Or, respectively. (b) Ba rim vs core compositions (EPMA; thin section), indicating zonation in the Adeje, El Abrigo and Arico units.
Different colors of symbols represent different samples within the same unit: El Abrigo (TFE_12_043, 045), Enramada (TFE_12_001,
005, 007, 065), Adeje (TFE_12_009, 010, 015), Arico (TFE_12_029, 030, 031) and Gaviotas (TFE_12_019, 020). (c) Ba (ppm) vs Sr (ppm)
by LA-ICP-MS (grain mount) showing concurrent high Ba with low Sr in the Arico unit. The the slight mismatch in Ba concentrations
in (b) and (c) is the result of different analytical techniques and samples.
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Fig. 8. (a) Tenerife biotite major element compositions: alumi-
num atoms per formula unit (a.p.f.u.) vs Mg# [Mg/(MgþFe)];
(b) Ba zonation in rim vs core, showing particularly intense
zonation in the Arico unit; (c) Ba vs Rb. Relative error on laser
measurements is �5%. Different colors of symbols represent
different samples within the same unit: El Abrigo
(TFE_12_043), Enramada (TFE_12_001), Adeje (TFE_12_010),
Arico (TFE_12_029, 031) and Gaviotas (TFE_12_019).

Fig. 9. Glass major and trace element compositions from all
studied units: (a) SiO2 vs Al2O3 (wt %) normalized to 100%; (b):
Ba vs Zr; (c) Sr vs Nb (ppm). Different colors of symbols repre-
sent different samples within the same unit: El Abrigo
(TFE_12_043), Enramada (TFE_12_001, 007), Adeje (TFE_
12_010, 015), Arico (TFE_12_030, 031) and Gaviotas (TFE_
12_019, 020).
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basanitic, (2) phonotephritic and (3) phonolitic compos-

itions (sensu lato). Comparison of these three groups in

terms of trace element content reveals a sharp drop in

Ni content from basanite to phonotephrite, and a drop

in Sr content from phonotephrite to phonolite (Fig. 4b
and c). These observations suggest the fractionation of

large amounts of olivine or pyroxene from the basan-

ites and plagioclase from the phonotephrites to form

the phonotephrites and phonolites, respectively. It

should be noted that whereas intermediate lavas are

often visibly mingled, the data plotted here lie along a

fractionation trend, which for the most part is inconsist-
ent with an origin purely by magma mixing (Fig. 4b and

c). Apart from the fact that mixing between contrasting

magmatic compositions in extremely difficult to achieve

(e.g. Sparks & Marshall, 1986), blending between

typically high-Ni–low-Sr basanite and low-Ni–low-Sr

phonolites would not lead to the low-Ni–high-Sr phono-
tephrites (Fig. 4b and c). Mixing between more evolved

compositions (phonotephrites and phonolites) can

occur, but this process obviously cannot produce the

phonotephritic magma itself (see similar arguments

made for volcanic series in different tectonic settings;

e.g. Wade et al., 2005; Lee & Bachmann, 2014; Mancini
et al., 2015; Szymanowski et al., 2015).

Optimal melt extraction from a crystal mush should

take place at intermediate crystallinity, controlled by the

onset of rheological lock-up (i.e. convection no longer

possible) and enhanced by thermal buffering from the

latent heat of crystallization (Dufek & Bachmann, 2010).

Low-crystallinity systems experience enhanced con-
vective stirring and heat loss (Marsh, 1981; Koyaguchi

& Kaneko, 1999), which precludes efficient melt–solid

segregation owing to rapid crystallization (i.e. short life-

time) and constant re-entrainment of crystals into con-

vective cells (Burgisser et al., 2005; Huber et al., 2009).

At high crystallinities, melt permeability reaches very
low values within the crystal mush, again leading to

inefficient melt extraction. Therefore, intermediate-

crystallinity magmas are those from which melt is most

efficiently extracted. It is possible, using thermo-

dynamic MELTS simulations, to predict the melt major

element composition of a magma within these con-

straints, assuming a known starting composition. It
should be noted that although MELTS is not optimized

for alkaline compositions, it has been used successfully

in such provinces in the past (e.g. Bohrson et al., 2006;

Fowler et al., 2007; Rooney et al., 2012). These paired

thermochemical and thermomechanical simulations

can therefore provide a model for the generation of
Tenerife’s compositional gaps and chemical diversity.

A two-stage fractionation model is considered,

whereby a deep basanitic magma reservoir generates

relatively discrete phonotephritic melts at intermediate

crystallinity, which upon extraction are emplaced in a

shallower magma reservoir and generate phonolitic

melts via the same mechanism. This two-stage model
is based on suggestions of polybaric differentiation

by previous researchers (Ablay et al., 1998;

Freundt-Malecha et al., 2001; Klügel et al., 2005). It is

also supported by mineral associations within the crys-

tal-rich pumices. Slightly resorbed mafic phases

(augiteþ Fe–Ti oxidesþ apatite 6 titanite 6 biotite

6 amphibole 6 sulfides) form minute glomerocrysts
(<1 mm) and can commonly be found within darker,

less evolved bands, suggesting that the recharge con-

tains parts of a remobilized mafic mush. Meanwhile,

anorthoclase forms glomerocrysts of up to 10 mm

(commonly together with biotite and/or haüyne); this

finding indicates accumulation of feldspars and associ-
ated low-P, low-T phases at shallower levels in the crust

[see Ellis et al. (2014) for similar characteristics]. Taken

together, these two glomerocryst types are consistent

with the presence of at least two major magma reser-

voirs at different depths beneath Tenerife, as indicated

by previous studies (Ablay et al., 1998; Neumann et al.,

1999; Klügel et al., 2005). The eruption of the residual
melts in the two reservoirs at these favorable levels of

differentiation (in addition to the eruption of parental

basanite prior to fractionation) would over time gener-

ate the observed trimodal chemical distribution on

Tenerife. The crystal-rich and crystal-poor phonolites

discussed above are a tertiary stage in the evolution,
operating on the same principles but no longer able to

generate large differences in major element chemistry.

MELTS simulations—magma reservoir processes
Model parameters for the MELTS simulations are sum-

marized in Table 4 and described in detail below.

Pressure
Although several studies indicate pyroxene crystalliza-

tion at mantle pressures (6–9 kbar; see Ablay et al.,

Table 4: MELTS model parameters

Designation Basanite Phonotephrite
average*

(AN31) (n¼105)

Composition (wt %)
SiO2 42�83 48�34
TiO2 4�08 2�86
Al2O3 13�99 17�47
FeOT 12�86 9�15
MnO 0�22 0�20
MgO 6�90 4�32
CaO 11�71 8�03
Na2O 3�40 4�98
K2O 1�01 2�29
P2O5 1�05 1�01
H2O 0�3/1�0 1�5/2�5/3�5
Intensive parameters
Liquidus T (�C) 1231/1219 1153/1148/1148
P (bar) 4000 1500
Mode NF NF
fO2 buffer NNO† QFM†

NF, no fractionation.
*Phonotephrites are from GEOROC database and are defined
as containing between 46 and 54 wt % SiO2 and between 6 and
8 wt % Na2OþK2O.
†Oxygen buffer set to find liquidus, then removed during
simulation.
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1998; Neumann et al., 1999), there is also evidence of

major magma stagnation and underplating at the base

of the crust, at �4 kbar (Klügel et al., 2005). We there-

fore use this pressure for the basanite fractionation

stage. For a shallow reservoir, we select a pressure of

1�5 kbar, following pressure estimates and phase equi-
librium experiments by Ablay et al. (1995) and Andújar

et al. (2008), respectively.

Oxygen fugacity
Following fO2 determinations from Fe–Ti oxides by

Ablay et al. (1998), we set the liquidus oxygen

fugacity at the nickel–nickel oxide buffer (NNO) for the

basanite–phonotephrite stage and at the quartz–

fayalite–magnetite buffer (QFM) for the phonotephrite–

phonolite stage, respectively. After calculating the
liquidus, the buffer is removed and the system is

allowed to equilibrate at lower temperatures.

Starting composition
An aphyric basanitic lava (AN31; Thirlwall et al., 2000) is

selected as the starting composition for this model, as it

represents a typical basanitic composition relatively de-

void of crystals and therefore approximately represents

a liquid composition. An average of 105 phonotephritic

lavas (in the range of 46–54 wt % SiO2 and 6–8 wt %

Na2OþK2O) is selected as the starting composition for

the second stage.

Water content
For the basanite, initial H2O concentrations of 0�3% and

1% are selected, representing a dry and a wet basanite.
For the phonotephrite, 1�5%, 2�5% and 3�5% H2O are

selected, corresponding to the fractionated melts from

the dry and wet runs in the first stage.

Latent heat of crystallization
The latent heat of the system is calculated from MELTS

output by subtracting the sensible heat change (calcu-

lated as the product of temperature step and the aver-

age heat capacity per step) from the change in total

enthalpy of the system. The ratio of the latent heat of
the system to the sensible heat is a proxy for the crystal-

lization of a new phase, and if the ratio is greater than
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unity, the system’s enthalpy loss is predominantly

manifested as mineral crystallization (Morse, 2011).

Spikes in latent heat or sensible heat coincide with the

crystallization of new phase, and at these moments, the

sensible heat loss of the system is diminished (assum-
ing a constant Joule flux out of the system). This results

in a system being thermally ‘buffered’, whereby

crystallization slows down, providing more time for

crystal–melt separation. Assuming little to no convec-

tion (probably at >30% crystals), these latent heat

spikes help maintain the magmas at a given crystallinity

for longer periods of time, enhancing melt extraction.

Results
Model oxide concentrations fit literature data well for

the basanite to phonotephrite evolution, with best fit

(determined by least-squares minimization) at �35%

and �45% crystallinity for the wet and dry basanites
(Fig. 10), respectively. This coincides with latent heat

spikes at �26% and �37% crystallinity (Fig. 11a).

Likewise, model data from the phonotephrite–phonolite

model adequately fit literature data, with best fit occur-

ring at �47% and �57% crystallinity for the wet and dry

phonotephrites (Fig. 12), corresponding to latent heat

spikes at �45% and �58% (Fig. 11b). Systematic offsets
between the model and literature values are stronger in

the second stage. It is unclear whether these are caused

by: (1) shortcomings of the MELTS model in reproduc-

ing appropriate compositions for feldspar, which makes

up the majority of the mineral assemblage; (2) influence

of open-system processes including magma mixing

and crustal assimilation; (3) the partial melting of low-
temperature phases such as feldspar, which is sup-

ported by the existence of the feldspar partial melts

documented in this study; or (4) some combination of

the above processes.

The most striking feature of the MELTS simulations

is the coincidence of latent heat spikes with crystallin-
ities at which the residual melt most closely resembles

literature values for phonotephrites and phonolites. In

the first stage of the simulations, the spikes occur near

crystallinities where convection slows owing to the

presence of incipient crystal networks (Davis & Acrivos,

1985; Saar et al., 2001), allowing hindered settling to
occur. For phonotephrite–phonolite evolution, the most

pronounced latent heat spike occurs within the crystal-

linity window calculated by Dufek & Bachmann (2010),

consistent with the interpretation that melt extraction in

this range is preferred in part because of latent heat buf-

fering. These findings are further supported by numer-

ical simulations by Gelman et al. (2013), which indicate
that incorporation of near-eutectic behavior in cooling

sills (i.e. latent heat buffering) enhances the longevity of

silicic magma reservoirs.

The phonotephrite–phonolite MELTS model, as

noted above, does not re-create average phonolite com-

positions perfectly, showing depletions in SiO2, Na2O
and Al2O3 of �2, �1 and �2 wt %, respectively, and

smaller offsets in other major elements (Fig. 11). This

can be due to a number of factors. First, MELTS crystal-

lizes sanidine and plagioclase in lieu of the anorthoclase

typical of Tenerife (i.e. lower Al2O3 and CaO and higher

SiO2, Na2O and K2O than the MELTS feldspar compos-

itions). Crystallizing the actual feldspar composition
would, on qualitative evaluation, increase Al2O3 and

CaO in the melt while decreasing SiO2, Na2O and K2O

concentrations, and hence help towards resolving the

numerical offset. Second, mixing of the residual melt

with recharge melt in natural samples would drive the

composition (particularly in FeO, MgO and TiO2 con-
tent) away from the model predictions, and this mixing

is not accounted for in the model. Partial assimilation of

syenite or basanite (Wiesmaier et al., 2012) may present

a plausible mechanism for creating the observed major

element compositions, particularly as the major elem-

ent composition of the syenites closely matches that of

phonolites (Wolff et al., 2000). However, partially melt-
ing subsolidus material presents thermal challenges, as

discussed below.
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Two considerations must be made when discussing

partial melting of the crust surrounding an intrusion or

recharge magma: (1) partial melting is enhanced by

adding volatiles; (2) advective heat transfer is more effi-
cient than conductive heat transfer. Taken together, this

means that the partial melting of a fully solidified and

degassed syenitic pluton by mafic underplating is much

less energetically favorable than partially melting a

volatile-rich crystal mush still containing residual melt

(Huber et al., 2011). Advective heating through disag-
gregation and partial homogenization of an evolved

crystal mush by recharge in the latter scenario leads to

more efficient heat exchange and allows for the partial

melting of low solidus temperature phases (e.g. alkali

feldspar), as discussed above. This combination of the

residual melt extracted from the crystal mush with

some amount of partial remelting of the leftover (but
still melt-bearing) cumulate leads to the observed

chemical and textural zoning in the ignimbrites.

Coincidentally, the addition of cumulate melt (perhaps

with some nepheline or haüyne addition) would shift

the residual melt composition toward higher Al2O3,

Na2O and SiO2 concentrations, correcting some of the

major element inconsistencies between MELTS models

and natural rock compositions. This process of feldspar

cannibalization, or ‘cognate cumulate melting’ has been
suggested for a number of silicic ignimbrites [see re-

view by Wolff et al. (2015)] and for deeper levels in the

magmatic system on Tenerife (‘AFC with authigenic cu-

mulate rocks’; see Wiesmaier et al., 2013). We assert

that this effect is probably as pronounced in the upper

crust, and is also consistent with trace element chemis-
try (in minerals and bulk-rocks) as discussed above.

The polybaric differentiation model described here

(building on the work of previous researchers in the

Canary Islands and elsewhere; e.g. Lipman et al., 1978;

Ablay et al., 1998; Freundt-Malecha et al., 2001; Klügel

et al., 2005) is favored for a number of reasons: (1)

assuming that MELTS results are accurate to a first
order, we reproduce the trimodality in Tenerife melt

compositions; (2) Ba- and Eu-rich, but Zr-, Rb- and Sr-

poor crystal-rich pumices, with Ba-rich rims on alkali

feldspar and biotite, indicate the presence of an unusual

melt, obtainable by partially melting an alkali
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feldspar-rich cumulate; (3) strong Ba depletion in crys-

tal-poor pumices is consistent with them being the ex-

tracted residual melts from a feldspar accumulation

zone; (4) frequent, small-volume eruptions throughout

the eruptive history of Teide serve as a rough proxy for
mafic–intermediate recharge into the phonolitic magma

chamber, making near-continuous rejuvenation and cu-

mulate melting possible; mass addition from these re-

charges (Bryan et al., 2002) may cause additional

complexities in the trace element signatures; finally, (5)

thermal models (Gelman et al., 2013; Karakas & Dufek,

2015) and geochronological studies (Reid et al., 1997;
Brown & Fletcher, 1999; Schmitt et al., 2003; Charlier

et al., 2005; Bachmann et al., 2007; Costa, 2008; Simon

et al., 2008) suggest that upper crustal silicic mushes

have extended lifetimes, making crystal–melt extraction

feasible.

CONCLUSIONS

The major findings of this study are as follows.

1. Some evolved magmas below Tenerife exist in a

mushy state characterized by highly crystalline,

interlocked textures. Periodic recharge creates ther-
mal and chemical disequilibrium (strong resorption

and embayments) in low-temperature phases (e.g.

anorthoclase and biotite phenocrysts), generating a

Ba-enriched, Zr-poor interstitial melt, part of which

then recrystallizes as Ba-enriched rims in feldspar

and biotite. The accumulation of Ba-rich feldspar–
biotite horizons within the crystal mush generates a

bulk composition that is high-Ba and low-Zr follow-

ing melt extraction, plotting on a trend that is away

from the liquid line of descent. Explosive phonolitic

eruptions may sample both the extracted residual (6

cumulate) melt (crystal-poor pumice) and its associ-

ated mushy cumulate (crystal-rich pumice), generat-
ing zoned deposits with a range in pumice textures.

2. MELTS models indicate that the melt extracted from

a crystallizing basanitic system at �40 vol. % crystal-

linity is roughly consistent with intermediate lava

compositions on Tenerife (phonotephritic). Using

phonotephritic lavas as starting compositions and
separating melt at 60 vol. % crystals (representing

the extraction of phonolitic melt from a crystal mush

at shallow depth) approximately reproduces the

chemical compositions of the Tenerife phonolites.

Preferential melt extraction enhanced by latent heat

buffering at intermediate crystallinities in lower and

upper crustal magma reservoirs may generate a vol-
canic record with a trimodal distribution, providing a

plausible mechanism for the generation of the

Bunsen–Daly Gap in Tenerife and other volcanic and

plutonic provinces where crystal fractionation dom-

inates magma differentiation. However, open-sys-

tem processes, particularly auto-assimilation of
cogenetic, fusible, silicic cumulates, mixing between

different magma batches, and various degrees of

crustal assimilation also play a vital role in generat-

ing the complex geochemical signatures that are

observed on Tenerife and in other magmatic

provinces.
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Klügel, A., Hansteen, T. H. & Galipp, K. (2005). Magma storage
and underplating beneath Cumbre Vieja volcano, La Palma
(Canary Islands). Earth and Planetary Science Letters 236,
211–226.

Koyaguchi, T. & Kaneko, K. (1999). A two-stage thermal evolu-
tion model of magmas in continental crust. Journal of
Petrology 40, 241–254.

Krastel, S. & Schmincke, H. (2002). Crustal structure of northern
Gran Canaria, Canary Islands, deduced from active seismic
tomography. Journal of Volcanology and Geothermal
Research 115, 153–177.

Le Bas, M., Le Maitre, R., Streckeisen, A. & Zanettin, B. (1986).
A chemical classification of volcanic rocks based on
the total alkali–silica diagram. Journal of Petrology 27,
745–750.

Lee, C.-T. A. & Bachmann, O. (2014). How important is the role
of crystal fractionation in making intermediate magmas?
Insights from Zr and P systematics. Earth and Planetary
Science Letters 393, 266–274.

Lipman, P. W. (1966). Water pressures during differentiation
and crystallization of some ash-flow magmas from southern
Nevada. American Journal of Science 264, 810–826.

Lipman, P. W. & Mehnert, H. H. (1975). Late Cenozoic basaltic
volcanism and development of the Rio Grande depression
in the southern Rocky Mountains. In: Curtis, B. (ed.),
Cenozoic History of the Southern Rocky Mountains,
Geological Society of America, Memoirs 144, 119–154.

Lipman, P. W., Doe, B. R., Hedge, C. E. & Steven, T. A. (1978).
Petrologic evolution of the San Juan volcanic field, south-
western Colorado: Pb and Sr isotope evidence. Geological
Society of America Bulletin 89, 59–82.

Mancini, A., Mattsson, H. B. & Bachmann, O. (2015). Origin of
the compositional diversity in the basalt-to-dacite series
erupted along the Heiðarsporður ridge, NE Iceland. Journal
of Volcanology and Geothermal Research 301, 116–127.

Marsh, B. (1981). On the crystallinity, probability of occurrence,
and rheology of lava and magma. Contributions to
Mineralogy and Petrology 78, 85–98.

Martı́, J., Mitjavila, J. & Araña, V. (1994). Stratigraphy, structure
and geochronology of the Las Cañadas caldera (Tenerife,
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