340 research outputs found

    Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Polarization

    Full text link
    We present a full-sky model of polarized Galactic microwave emission based on three years of observations by the Wilkinson Microwave Anisotropy Probe (WMAP) at frequencies from 23 to 94 GHz. The model compares maps of the Stokes Q and U components from each of the 5 WMAP frequency bands in order to separate synchrotron from dust emission, taking into account the spatial and frequency dependence of the synchrotron and dust components. This simple two-component model of the interstellar medium accounts for at least 97% of the polarized emission in the WMAP maps of the microwave sky. Synchrotron emission dominates the polarized foregrounds at frequencies below 50 GHz, and is comparable to the dust contribution at 65 GHz. The spectral index of the synchrotron component, derived solely from polarization data, is -3.2 averaged over the full sky, with a modestly flatter index on the Galactic plane. The synchrotron emission has mean polarization fraction 2--4% in the Galactic plane and rising to over 20% at high latitude, with prominent features such as the North Galactic Spur more polarized than the diffuse component. Thermal dust emission has polarization fraction 1% near the Galactic center, rising to 6% at the anti-center. Diffuse emission from high-latitude dust is also polarized with mean fractional polarization 0.036 +/- 0.011.Comment: 9 pages with 8 figures. For higher quality figures, see the version posted at http://lambda.gsfc.nasa.gov/product/map/dr2/map_bibliography.cf

    The Wilkinson Microwave Anisotropy Probe (WMAP) Source Catalog

    Get PDF
    We present the list of point sources found in the WMAP 5-year maps. The technique used in the first-year and three-year analysis now finds 390 point sources, and the five-year source catalog is complete for regions of the sky away from the galactic plane to a 2 Jy limit, with SNR > 4.7 in all bands in the least covered parts of the sky. The noise at high frequencies is still mainly radiometer noise, but at low frequencies the CMB anisotropy is the largest uncertainty. A separate search of CMB-free V-W maps finds 99 sources of which all but one can be identified with known radio sources. The sources seen by WMAP are not strongly polarized. Many of the WMAP sources show significant variability from year to year, with more than a 2:1 range between the minimum and maximum fluxes.Comment: 31 pages Latex with 4 embedded figures. Version accepted by the ApJ Supplement

    Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results

    Get PDF
    We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter LCDM model. When WMAP data are combined with measurements of the high-l CMB anisotropy, the BAO scale, and the Hubble constant, the densities, Omegabh2, Omegach2, and Omega_L, are each determined to a precision of ~1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5sigma level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional LCDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their LCDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r<0.13 (95% CL); the spatial curvature parameter is limited to -0.0027 (+0.0039/-0.0038); the summed mass of neutrinos is <0.44 eV (95% CL); and the number of relativistic species is found to be 3.84+/-0.40 when the full data are analyzed. The joint constraint on Neff and the primordial helium abundance agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent PLANCK measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe.Comment: 32 pages, 12 figures, v3: Version accepted to Astrophysical Journal Supplement Series. Includes improvements in response to referee and community; corrected 3 entries in Table 10, (w0 & wa model). See the Legacy Archive for Microwave Background Data Analysis (LAMBDA): http://lambda.gsfc.nasa.gov/product/map/current/ for further detai

    Five-Year Wilkinson Microwave Anisotropy Probe Observations: Source Catalog

    Get PDF
    We present the list of point sources found in the Wilkinson Microwave Anisotropy Probe (WMAP) five-year maps. The technique used in the first-year and three-year analyses now finds 390 point sources, and the five-year source catalog is complete for regions of the sky away from the Galactic plane to a 2 Jy limit, with SNR > 4.7 in all bands in the least covered parts of the sky. The noise at high frequencies is still mainly radiometer noise, but at low frequencies the cosmic microwave background (CMB) anisotropy is the largest uncertainty. A separate search of CMB-free V-W maps finds 99 sources of which all but one can be identified with known radio sources. The sources seen by WMAP are not strongly polarized. Many of the WMAP sources show significant variability from year to year, with more than a 2: 1 range between the minimum and maximum fluxes.NASA NNG05GE76G, NNX07AL75G S01, LTSA03-000-0090, ATPNNG04GK55G, ADP03-0000-092Astronom

    Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Foreground Emission

    Get PDF
    We present updated estimates of Galactic foreground emission using seven years of WMAP data. Using the power spectrum of differences between multi-frequency template-cleaned maps, we find no evidence for foreground contamination outside of the updated (KQ85y7) foreground mask.We place a 15μK upper bound on rms foreground contamination in the cleaned maps used for cosmological analysis. Further, the cleaning process requires only three power-law foregrounds outside of the mask. We find no evidence for polarized foregrounds beyond those from soft (steep-spectrum) synchrotron and thermal dust emission; in particular we find no indication in the polarization data of an extra “haze” of hard synchrotron emission from energetic electrons near the Galactic center. We provide an updated map of the cosmic microwave background (CMB) using the internal linear combination method, updated foreground masks, and updates to point source catalogs using two different techniques. With additional years of data, we now detect 471 point sources using a five-band technique and 417 sources using a three-band CMB-free technique. In total there are 62 newly detected point sources, a 12% increase over the five-year release. Also new are tests of theMarkov chain Monte Carlo foreground fitting procedure against systematics in the time-stream data, and tests against the observed beam asymmetry. Within a few degrees of the Galactic plane, the behavior in total intensity of low-frequency foregrounds is complicated and not completely understood. WMAP data show a rapidly steepening spectrum from 20 to 40 GHz, which may be due to emission from spinning dust grains, steepening synchrotron, or other effects. Comparisons are made to a 1 deg 408 MHz map (Haslam et al.) and the 11 deg ARCADE 2 data (Singal et al.).We find that spinning dust or steepening synchrotron models fit the combination of WMAP and 408 MHz data equally well. ARCADE data appear inconsistent with the steepening synchrotron model and consistent with the spinning dust model, though some discrepancies remain regarding the relative strength of spinning dust emission. More high-resolution data in the 10–40 GHz range would shed much light on these issues

    The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background: IV. Cosmological Implications

    Full text link
    In this paper we examine the cosmological constraints of the recent DIRBE and FIRAS detection of the extragalactic background light between 125-5000 microns on the metal and star formation histories of the universe.Comment: 38 pages and 9 figures. Accepted for publications in The Astrophysical Journa

    Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Angular Power Spectra

    Get PDF
    We present the temperature and polarization angular power spectra of the cosmic microwave background (CMB) derived from the first 5 years of WMAP data. The 5-year temperature (TT) spectrum is cosmic variance limited up to multipole l=530, and individual l-modes have S/N>1 for l<920. The best fitting six-parameter LambdaCDM model has a reduced chi^2 for l=33-1000 of chi^2/nu=1.06, with a probability to exceed of 9.3%. There is now significantly improved data near the third peak which leads to improved cosmological constraints. The temperature-polarization correlation (TE) is seen with high significance. After accounting for foreground emission, the low-l reionization feature in the EE power spectrum is preferred by \Delta\chi^2=19.6 for optical depth tau=0.089 by the EE data alone, and is now largely cosmic variance limited for l=2-6. There is no evidence for cosmic signal in the BB, TB, or EB spectra after accounting for foreground emission. We find that, when averaged over l=2-6, l(l+1)C^{BB}_l/2\pi < 0.15 uK^2 (95% CL).Comment: 29 pages, 13 figures, accepted by ApJ

    Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results

    Full text link
    (Abridged) New full sky temperature and polarization maps based on seven years of data from WMAP are presented. The new results are consistent with previous results, but have improved due to reduced noise from the additional integration time, improved knowledge of the instrument performance, and improved data analysis procedures. The improvements are described in detail. The seven year data set is well fit by a minimal six-parameter flat Lambda-CDM model. The parameters for this model, using the WMAP data in conjunction with baryon acoustic oscillation data from the Sloan Digital Sky Survey and priors on H_0 from Hubble Space Telescope observations, are: Omega_bh^2 = 0.02260 +-0.00053, Omega_ch^2 = 0.1123 +-0.0035, Omega_Lambda = 0.728 +0.015 -0.016, n_s = 0.963 +-0.012, tau = 0.087 +-0.014 and sigma_8 = 0.809 +-0.024 (68 % CL uncertainties). The temperature power spectrum signal-to-noise ratio per multipole is greater that unity for multipoles < 919, allowing a robust measurement of the third acoustic peak. This measurement results in improved constraints on the matter density, Omega_mh^2 = 0.1334 +0.0056 -0.0055, and the epoch of matter- radiation equality, z_eq = 3196 +134 -133, using WMAP data alone. The new WMAP data, when combined with smaller angular scale microwave background anisotropy data, results in a 3 sigma detection of the abundance of primordial Helium, Y_He = 0.326 +-0.075.The power-law index of the primordial power spectrum is now determined to be n_s = 0.963 +-0.012, excluding the Harrison-Zel'dovich-Peebles spectrum by >3 sigma. These new WMAP measurements provide important tests of Big Bang cosmology.Comment: 42 pages, 9 figures, Submitted to Astrophysical Journal Supplement Serie

    Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Bayesian Estimation of CMB Polarization Maps

    Get PDF
    We describe a sampling method to estimate the polarized CMB signal from observed maps of the sky. We use a Metropolis-within-Gibbs algorithm to estimate the polarized CMB map, containing Q and U Stokes parameters at each pixel, and its covariance matrix. These can be used as inputs for cosmological analyses. The polarized sky signal is parameterized as the sum of three components: CMB, synchrotron emission, and thermal dust emission. The polarized Galactic components are modeled with spatially varying power law spectral indices for the synchrotron, and a fixed power law for the dust, and their component maps are estimated as by-products. We apply the method to simulated low resolution maps with pixels of side 7.2 degrees, using diagonal and full noise realizations drawn from the WMAP noise matrices. The CMB maps are recovered with goodness of fit consistent with errors. Computing the likelihood of the E-mode power in the maps as a function of optical depth to reionization, tau, for fixed temperature anisotropy power, we recover tau=0.091+-0.019 for a simulation with input tau=0.1, and mean tau=0.098 averaged over 10 simulations. A `null' simulation with no polarized CMB signal has maximum likelihood consistent with tau=0. The method is applied to the five-year WMAP data, using the K, Ka, Q and V channels. We find tau=0.090+-0.019, compared to tau=0.086+-0.016 from the template-cleaned maps used in the primary WMAP analysis. The synchrotron spectral index, beta, averaged over high signal-to-noise pixels with standard deviation sigma(beta)<0.25, but excluding ~6% of the sky masked in the Galactic plane, is -3.03+-0.04. This estimate does not vary significantly with Galactic latitude, although includes an informative prior.Comment: 11 pages, 9 figures, matches version accepted by Ap

    Sensitivity to millicharged particles in future proton-proton collisions at the LHC with the milliQan detector

    Get PDF
    We report on the expected sensitivity of dedicated scintillator-based detectors at the LHC for elementary particles with charges much smaller than the electron charge. The dataset provided by a prototype scintillator-based detector is used to characterise the performance of the detector and provide an accurate background projection. Detector designs, including a novel slab detector configuration, are considered for the data taking period of the LHC to start in 2022 (Run 3) and for the high luminosity LHC. With the Run 3 dataset, the existence of new particles with masses between 10 MeV and 45 GeV could be excluded at 95% confidence level for charges between 0.003e and 0.3e, depending on their mass. With the high luminosity LHC dataset, the expected limits would reach between 10 MeV and 80 GeV for charges between 0.0018e and 0.3e, depending on their mas
    corecore