261 research outputs found

    Elucidating the role of matrix porosity and rigidity in glioblastoma type IV progression

    Get PDF
    The highly infiltrating nature of glioma cells is the major cause for the poor prognosis of brain malignancies. Motility, proliferation, and gene expression of cells in natural and synthetic gels have been analyzed by several authors, yet quantitative studies elucidating the role of matrix porosity and rigidity in the development of whole malignant masses are missing. Here, an experimental\u2010computational framework is introduced to analyze the behavior of U87\u2010MG cells and spheroids in compact hyaluronic acid gels (HA), replicating the brain parenchyma; and fibrous collagen gels (COL), resembling the organized structures of the brain. Experimentally it was observed that individual U87\u2010MG cells in COL assumed an elongated morphology within a few hours post inclusion (p.i.) and travelled longer distances than in HA. As spheroids, U87\u2010MG cells rapidly dispersed into COL resulting in infiltrating regions as large as tumor cores ( 48600 \u3bcm, at 8 days p.i.). Conversely, cells in HA originated smaller and denser infiltrating regions ( 48300 \u3bcm, at 8 days p.i.). Notably, COL tumor core size was only 20% larger than in HA, at longer time points. Computationally, by introducing for the first time the effects of matrix heterogeneity in our numerical simulations, the results confirmed that matrix porosity and its spatial organization are key factors in priming the infiltrating potential of these malignant cells. The experimental\u2010numerical synergy can be used to predict the behavior of neoplastic masses under diverse conditions and the efficacy of combination therapies simultaneously aiming at killing cancer cells and modulating the tumor microenvironment

    A parametric study of a multiphase porous media model for tumor spheroids and environment interactions

    Get PDF
    Computational models for tumor growth provide an effective in silico tool to investigate the different stages of cancer growth. Recently, a series of computational models based on porous media theory has been proposed to predict tumor evolution and its interactions with the host tissue. In addition, a specialization of the original models, adapted for tumor spheroids, has been proposed and validated experimentally. However, due to the complexity of the modeling framework, a systematic understanding of the role of the parameters governing the equations is still lacking. In this work, we perform a parametric analysis on a set of fundamental parameters appearing in the model equations. We investigate the effects of a variation of these coefficients on the spheroid growth curves and, in particular, on the final radii reached by the cell aggregates in the growth saturation stage. Finally, we provide a discussion of the results and give a brief summary of our findings

    Annexin 2A sustains glioblastoma cell dissemination and proliferation.

    Get PDF
    Glioblastoma (GBM) is the most devastating tumor of the brain, characterized by an almost inevitable tendency to recur after intensive treatments and a fatal prognosis. Indeed, despite recent technical improvements in GBM surgery, the complete eradication of cancer cell disseminated outside the tumor mass still remains a crucial issue for glioma patients management. In this context, Annexin 2A (ANXA2) is a phospholipid-binding protein expressed in a variety of cell types, whose expression has been recently associated with cell dissemination and metastasis in many cancer types, thus making ANXA2 an attractive putative regulator of cell invasion also in GBM.Here we show that ANXA2 is over-expressed in GBM and positively correlates with tumor aggressiveness and patient survival. In particular, we associate the expression of ANXA2 to a mesenchymal and metastatic phenotype of GBM tumors. Moreover, we functionally characterized the effects exerted by ANXA2 inhibition in primary GBM cultures, demonstrating its ability to sustain cell migration, matrix invasion, cytoskeletal remodeling and proliferation. Finally, we were able to generate an ANXA2-dependent gene signature with a significant prognostic potential in different cohorts of solid tumor patients, including GBM.In conclusion, we demonstrate that ANXA2 acts at multiple levels in determining the disseminating and aggressive behaviour of GBM cells, thus proving its potential as a possible target and strong prognostic factor in the future management of GBM patients

    The Effects of Business Failure Experience on Successive Entrepreneurial Engagements: An Evolutionary Phase Model

    Get PDF
    This study draws insights from the literatures on entrepreneurial learning from failure and organizational imprinting to develop an evolutionary phase model to explain how prior business failure experience influences successive newly started businesses. Using multiple case studies of entrepreneurs located in an institutionally developing society in Sub-Sahara Africa, we uncover four distinctive phases of post-entrepreneurial business failure: grief and despair, transition, formation and legacy phases. We find that while the grieving and transition phases entailed processes of reflecting and learning lessons from the business failure experiences, the formation and legacy phases involve processes of imprinting entrepreneurs’ experiential knowledge on their successive new start-up firms. We conclude by outlining a number of fruitful avenues for future research

    Optimisation of ITER Nb3Sn CICCs for coupling loss, transverse electromagnetic load and axial thermal contraction

    Get PDF
    The ITER cable-in-conduit conductors (CICCs) are built up from sub-cable bundles, wound in different stages, which are twisted to counter coupling loss caused by time-changing external magnet fields. The selection of the twist pitch lengths has major implications for the performance of the cable in the case of strain sensitive superconductors, i.e. Nb3Sn, as the electromagnetic and thermal contraction loads are large but also for the heat load from the AC coupling loss. Reduction of the transverse load and warm-up cool-down degradation can be reached by applying longer twist pitches in a particular sequence for the sub-stages, offering a large cable transverse stiffness, adequate axial flexibility and maximum allowed lateral strand support. Analysis of short sample (TF conductor) data reveals that increasing the twist pitch can lead to a gain of the effective axial compressive strain of more than 0.3 % with practically no degradation from bending. For reduction of the coupling loss, specific choices of the cabling twist sequence are needed with the aim to minimize the area of linked strands and bundles that are coupled and form loops with the applied changing magnetic field, instead of simply avoiding longer pitches. In addition we recommend increasing the wrap coverage of the CS conductor from 50 % to at least 70 %. The models predict significant improvement against strain sensitivity and substantial decrease of the AC coupling loss in Nb3Sn CICCs, but also for NbTi CICCs minimization of the coupling loss can be achieved. Although the success of long pitches to transverse load degradation was already demonstrated, the prediction of the combination with low coupling loss needs to be validated by a short sample test.Comment: to be published in Supercond Sci Techno

    Isospin dependence of electromagnetic transition strengths among an isobaric triplet

    Get PDF
    Electric quadrupole matrix elements, M, for the J=2→0, ΔT=0, T=1 transitions across the A=46 isobaric multiplet Cr-V-Ti have been measured at GSI with the FRS-LYCCA-AGATA setup. This allows direct insight into the isospin purity of the states of interest by testing the linearity of M with respect to T. Pairs of nuclei in the T=1 triplet were studied using identical reaction mechanisms in order to control systematic errors. The M values were obtained with two different methodologies: (i) a relativistic Coulomb excitation experiment was performed for Cr and Ti; (ii) a “stretched target” technique was adopted here, for the first time, for lifetime measurements in V and Ti. A constant value of M across the triplet has been observed. Shell-model calculations performed within the fp shell fail to reproduce this unexpected trend, pointing towards the need of a wider valence space. This result is confirmed by the good agreement with experimental data achieved with an interaction which allows excitations from the underlying sd shell. A test of the linearity rule for all published data on complete T=1 isospin triplets is presented.Peer Reviewe

    Beta decay of the Tz=-2 nucleus 64Se and its descendants

    Get PDF
    International audience; The beta decay of the Tz=-2 nucleus 64Se has been studied in a fragmentation reaction at RIKEN-Nishina Center. 64Se is the heavies Tz=-2 nucleus that decays to bound states in the daughter nucleus and the heaviest case where the mirror reaction 64Zn(3He,t)64Ga on the Tz=+2 64Zn stable target exists and can be compared. Beta-delayed gamma and proton radiation is reported for the 64Se and 64As cases. New levels have been observed in 64As, 64Ge (N=Z), 63Ge and 63Ga. The associated T1/2 values have been obtained

    The DEMO magnet system – Status and future challenges

    Get PDF
    We present the pre-concept design of the European DEMO Magnet System, which has successfully passed the DEMO plant-level gate review in 2020. The main design input parameters originate from the so-called DEMO 2018 baseline, which was produced using the PROCESS systems code. It defines a major and minor radius of 9.1 m and 2.9 m, respectively, an on-axis magnetic field of 5.3 T resulting in a peak field on the toroidal field (TF) conductor of 12.0 T. Four variants, all based on low-temperature superconductors (LTS), have been designed for the 16 TF coils. Two of these concepts were selected to be further pursued during the Concept Design Phase (CDP): the first having many similarities to the ITER TF coil concept and the second being the most innovative one, based on react-and-wind (RW) Nb3Sn technology and winding the coils in layers. Two variants for the five Central Solenoid (CS) modules have been investigated: an LTS-only concept resembling to the ITER CS and a hybrid configuration, in which the innermost layers are made of high-temperature superconductors (HTS), which allows either to increase the magnetic flux or to reduce the outer radius of the CS coil. Issues related to fatigue lifetime which emerged in mechanical analyses will be addressed further in the CDP. Both variants proposed for the six poloidal field coils present a lower level of risk for future development. All magnet and conductor design studies included thermal-hydraulic and mechanical analyses, and were accompanied by experimental tests on both LTS and HTS prototype samples (i.e. DC and AC measurements, stability tests, quench evolution etc.). In addition, magnet structures and auxiliary systems, e.g. cryogenics and feeders, were designed at pre-concept level. Important lessons learnt during this first phase of the project were fed into the planning of the CDP. Key aspects to be addressed concern the demonstration and validation of critical technologies (e.g. industrial manufacturing of RW Nb3Sn and HTS long conductors, insulation of penetrations and joints), as well as the detailed design of the overall Magnet System and mechanical structures

    AKR1C enzymes sustain therapy resistance in paediatric T-ALL

    Get PDF
    BACKGROUND: Despite chemotherapy intensification, a subgroup of high-risk paediatric T-cell acute lymphoblastic leukemia (TALL) patients still experience treatment failure. In this context, we hypothesised that therapy resistance in T-ALL might involve aldo-keto reductase 1C (AKR1C) enzymes as previously reported for solid tumors.METHODS: Expression of NRF2-AKR1C signaling components has been analysed in paediatric T-ALL samples endowed with different treatment outcomes as well as in patient-derived xenografts of T-ALL. The effects of AKR1C enzyme modulation has been investigated in T-ALL cell lines and primary cultures by combining AKR1C inhibition, overexpression, and gene silencing approaches.RESULTS: We show that T-ALL cells overexpress AKR1C1-3 enzymes in therapy-resistant patients. We report that AKR1C1-3 enzymes play a role in the response to vincristine (VCR) treatment, also ex vivo in patient-derived xenografts. Moreover, we demonstrate that the modulation of AKR1C1-3 levels is sufficient to sensitise T-ALL cells to VCR. Finally, we show that T-ALL chemotherapeutics induce overactivation of AKR1C enzymes independent of therapy resistance, thus establishing a potential resistance loop during T-ALL combination treatment.CONCLUSIONS: Here, we demonstrate that expression and activity of AKR1C enzymes correlate with response to chemotherapeutics in T-ALL, posing AKR1C1-3 as potential targets for combination treatments during T-ALL therapy
    • …
    corecore