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Abstract. Computational models for tumor growth provide an effective in silico tool to inves-
tigate the different stages of cancer growth. Recently, a series of computational models based 
on porous media theory has been proposed to predict tumor evolution and its interactions 
with the host tissue. In addition, a specialization of the original models, adapted for tumor 
spheroids, has been proposed and validated experimentally. However, due to the complexity 
of the modeling framework, a systematic understanding of the role of the parameters govern-
ing the equations is still lacking. In this work, we perform a parametric analysis on a set of 
fundamental parameters appearing in the model equations. We investigate the effects of a 
variation of these coefficients on the spheroid growth curves and, in particular, on the final 
radii reached by the cell aggregates in the growth saturation stage. Finally, we provide a dis-
cussion of the results and give a brief summary of our findings.  
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1 INTRODUCTION 
    Cancer is one of the leading causes of the death in the world [1], involving primarily altered 
cell proliferation and migration of cancer cells to form metastasis in different regions of the 
body [2]. Recently, it has become clear that a collective effort from all the physical sciences is 
required to improve our understanding of this illness and design new strategies for therapeuti-
cal treatments [3–6]. The development of effective computational models to investigate the 
growth of a tumor mass is certainly a valid contribution to this field. Mathematical models 
can analyze the tumor evolution in detail, with a strict control of the parameters governing the 
equations. Moreover, they can help the experimental investigators in dissecting the dynamics 
of the systems under study and guide the design of new experiments [7]. 
    In [8], the authors present a computational model for avascular tumor growth based on po-
rous media theory. They apply their modeling framework to the growth of a tumor spheroid in 
vitro and confined in a healthy tissue, where the relative adhesion of tumor cells and host cells 
to the extracellular matrix is analyzed. Moreover, they study a tumor cord in a three dimen-
sional geometry, where tumor cells grow around microvessels carrying nutrients. They further 
develop the existing model in [9], where different adhesion interactions between host cells, 
tumor cells and interstitial fluid are taken into account. Five different cases are dealt with, 
where interfacial tensions between the cellular constituents and the interstitial fluid are varied, 
together with their dynamic viscosities. In [10], the authors relax the hypothesis of a rigid ex-
tracellular matrix in the tumor tissue, and investigate its deformability making use of rate-
dependent plasticity. They apply this framework to analyze the growth of a tumor spheroid in 
a decellularized extracellular matrix and then in the presence of host cells. Further, they apply 
the model to study the growth of a melanoma and investigate its temporal and spatial evolu-
tion. Another development of the model is given in [11], where the authors introduce remod-
eling of the extracellular matrix during tumor growth and cell lysis. They study the effect of 
matrix remodeling on spheroid growth inside a decellularized matrix by comparing their re-
sults to the previous implementation. They investigate also the impact of lysis in the dynamics 
of the system. In [12], the authors specialize the previous modeling framework for tumor 
spheroids. They carry out a set of experiments on U-87 spheroids to validate the equations 
and test new constitutive relations. Comparison with experiments is performed both with 
spheroids freely suspended in a culture medium and subjected to different mechanical loads.  
    Due to the complexity of these models, an understanding of the role of the different param-
eters is difficult. For example, in [12] it is not clear which model parameters have a signifi-
cant effect on the growth of the spheroids. In this paper, we perform a parametric analysis on 
a set of governing coefficients appearing in the model equations. We test the effect of parame-
ter variation on the spheroid growth curve and in particular on the final radius reached by the 
cell aggregate. Finally, we provide a discussion of the results and summarize our findings in 
the conclusions.          

2 THE MATHEMATICAL MODEL 

The governing equations of the model are derived in the context of porous media theory. 
Starting from microscopic relations between the constituents, the theory makes use of suitable 
spatial and temporal averaging theorems to provide balance laws at the scale of the tissue (al-
so termed, “the macroscale”). In this way, the complexity arising from the high spatial varia-
bility and several interactions characterizing the microscale is overcome. Then, the 
introduction of a suitable set of constitutive relations into the macroscale equations provides 
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the closed form of the problem. Detailed information about the model derivation can be found 
in previous works of the authors [8–12].  

We model the tumor tissue as a biphasic porous medium, composed of the following con-
stituents, or phases: (i) the tumor cells (TCs), which are divided into living (LTCs) and ne-
crotic (NTCs) cells, and (ii) the interstitial fluid (IF), represented in Figure 1. In the language 
of porous media theory, the union of TCs and extracellular matrix (ECM) constitutes the solid 
skeleton of the system, whereas the IF represents the fluid phase permeating the pores. The IF 
carries nutrients, growth factors and waste products; for the sake of simplicity, we consider 
only one nutrient in our model, namely oxygen (ox), which can diffuse and be consumed by 
LTCs. Adequate levels of nutrient are necessary for cell proliferation, otherwise they start ne-
crosis and lysis. Finally, we assume cell duplication to be influenced by the local level of me-
chanical stress, with cells proliferating poorly when subjected to compression. In the 
following, t (tumor) and l (liquid) will denote quantities related to the solid and fluid part of 
the biphasic system, respectively. 

 

 
 

Figure 1: The constituents of the biphasic system. 
 

2.1 The governing equations for tumor spheroids 
We denote the volume fractions of the solid and the fluid by tε and lε , respectively. We as-

sume that the fluid permeates completely the voids left by the solid skeleton, and apply the 
saturation constraint:  

 1t lε ε+ =   (1)   

Then we write the governing equations for the tumor volume fraction, the interstitial fluid 
pressure ( lp ), the oxygen mass fraction ( oxω ) and the necrotic cell mass fraction ( Ntω ). In the 
following, we report the balance laws as appear for the tumor spheroid growth case. We refer 
the interested reader to [12] for a full derivation. We solve the system of equations given by: 
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where r  is the radial coordinate over the spheroid radius; k  is the intrinsic permeability of 
the solid matrix; lµ  is the dynamic viscosity of the IF; oxD  is the diffusion coefficient of ox-
ygen; and ρ is the density of the phases. As described in detail in [12], Σ is a quantity relating 
the mechanical stress in the tumor to the solid volume fraction. In the equations above we 
make use of ′Σ , the derivative of Σ respect to tε , which can be computed analytically from the 
expression reported in [12].  
    The mass exchange terms appearing in equations (2)-(4) have the form: 
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Here t
gγ , t

lλ , t
nγ  and 0

tγ  are coefficients that account for the nutrient and IF mass that becomes 
tumor due to cell growth; the degradation of cellular membranes and the following mass con-
version into IF; the rate of cell death; and the oxygen uptake rate in the tumor, respectively. 
The quantity 1Lt Ntω ω= −  represents the mass fraction of LTCs, and guarantees that growth, 
death and oxygen uptake are active only on the living portion of the spheroid. The Macaulay 
brackets 

+
⋅  appearing in equations (5) and (7) return the positive value of their argument. 

Since the oxygen mass fraction inside the spheroid is equal or smaller than its environmental 
level in the culture medium ox

envω , the brackets in equation (5) will return a value between uni-
ty (for ox ox

envω ω= ) and zero (for ox ox
critω ω≤ ). Note that here ox

critω  is the oxygen threshold level 
below which cell proliferation is inhibited. Equation (6) describes cell lysis occurring in the 
NTCs, whereas a consideration similar to the one for equation (5) holds true for equation (7), 
which describes TC death due to the lack of nutrient. Finally, equation (8) describes the up-
take of oxygen by LTCs and accounts for the dependence of nutrient consumption on its local 
level. Here oxc  is the oxygen mass fraction at which oxygen consumption is reduced by half. 
Note that the function H  in equation  (5) describes the inhibition of cell proliferation due to 
the mechanical stress exerted on the TCs. Even though several alternatives are given in the 
literature, in [12] we provide a mathematical expression for this quantity that is able to de-
scribe accurately our experimental observations on spheroid growth under a controlled exter-
nal compression.  
    We model the growth of the spheroid as a free-boundary problem, where the interface con-
stituted by the TCs moves with velocity tv , given by: 
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µ
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with R  the external radius of the spheroid. The closed form of the differential problem is ob-
tained by defining a set of boundary and initial conditions. In particular, symmetry requires 
no-flow boundary conditions at the spheroid center, while we assume Dirichlet boundary 
conditions on the tumor external surface: 
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Finally, we assume the following initial conditions over the spheroid radius: 

 0, on 0  a, , t 0t t Nt ox ox
ext env r R tε ε ω ω ω= = = < < =   (12) 

 

3 RESULTS AND DISCUSSION 
In [12], we have performed numerical simulations of the equations in (2)-(4) and we have 

recorded the resulting growth curves, namely the evolution of the spheroid radius over time. 
We have analyzed both the case of spheroids freely growing in their culture medium, and the 
case where an external compression is applied. The values of the governing parameters are 
obtained from the literature, when they are available, and from the fit of the experimental 
curves. In this work, we investigate the dependence of the growth curves on a set of these 
parameters, summarized in Table 1. 
                                                      

Parameter Description Reference value Unit 
0R  Initial radius of the spheroid 145  mµ   
ox
critω   Critical mass fraction of oxygen 62.0 10−×   ( )−  
t
gγ   Coefficient related to growth 35.4 10−×   3kg / (m s)⋅   
t
nγ  Coefficient related to necrosis 11.5 10−×  3kg / (m s)⋅  
t
lλ  Coefficient related to lysis 21.15 10−×  3kg / (m s)⋅  
α  Coefficient in the definition of Σ  510  Pa  

 

Table 1: Parameters considered in this work. The reference value is the one used in [12]. 
  
We start our analysis from 0R , the initial radius of the spheroid. In Figure 2 we report the 
behavior of the growth curve for different initial spheroid radii. Note that in all the following 
figures the curve in red is the one corresponding to the reference value in Table 1. We 
consider spheroids with initial radii of 90, 117.5, 145, 172.5 and 200 µm. For all the different 
conditions, in particular for the small initial radii, it is possible to visualize the three stages 
characterizing the growth of the spheroids [13]: the exponential phase in the first days of 
growth, where the cells proliferate in a nutrient-rich environment; the linear phase, where the 
the tumor mass becomes larger and the nutrient starts to run low; and the growth saturation 
phase, where a significant portion of the spheroid is necrotic and only a small rim of cell 
proliferates at the tumor border. Notably, although the spheroids with the larger initial radii 
are constitued by more tumor cells than the others, they reach a similar final radius, of about 
475 µm. This behavior is consistent with our assumption of growth as limited by nutrient dep-
rivation. For a fixed level of external oxygen ( ox

envω ), only a fixed number of TCs is allowed to 
coexist in the spheroid mass. This condition is met sooner for the spheroids with larger initial 
radii and later for the others, as shown in the curves and observed experimentally in [12]. 
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Figure 2: Spheroid growth curves for different initial radii. 
 
    Next, we study the effect of a variation in the critical level of oxygen  ω crit

ox . The resulting 
growth curves are shown in Figure 3. We consider values for ox

critω  of 1.0×10-6, 2.0×10-6, 
3.0×10-6, 4.0×10-6, 5.0×10-6 and 6.0×10-6 (the black arrow points in the direction of increasing 
values of ox

critω ; this holds true also for the following figures). The choice of this parameter af-
fects significantly the final radius reached by the spheroids. In particular, higher values of the 
critical level of oxygen provide smaller final radii. This follows from the modeling choice in 
equation (5), where cell proliferation is a linear function of the oxygen critical level. If this 
threshold value is high when compared to the external mass fraction of oxygen, only a small 
fraction of the spheroid is able to proliferate and the final radius is reduced. 
    The next parameter that we consider is the growth coefficient t

gγ . In Figure 4, we consider 
values of this coefficient that are ±25, ±50 and ±75% of the reference value. Also for this pa-
rameter, the final radius reached by the spheroid strongly depends on its value. Interestingly, 
t
gγ  seems to regulate the time scale of the phenomenon. Actually, for small values of the 

growth coefficient, at the end of the simulations the spheroid is still in the first stages of 
growth. On the contrary, for higher values of t

gγ  the spheroid reaches faster its final radius. 
We also observe that the steady radius increases for increasing values of the growth coeffi-
cient. In fact, growth saturation is established when the net production of new tumor mass is 
zero. This means that, in a given time interval, the number of new cells produced by growth 
has to be equivalent to the number of cells undergoing lysis. This number is approximately 
given by the number of necrotic cells times the lysis rate. If the lysis rate is fixed, as in the 
present case, and the growth coefficient is increased, there is a net production of TCs and the 
radius grows further. To reach a new steady condition, the necrotic core of the spheroid has to 
increase in size, so that the number of cells undergoing lysis is again equal to the number of 
generated TCs. This idea can be tested through a variation of the parameters that regulate cell 
death, namely t

nγ  and t
lλ , together with a consistent variation of the growth coefficient t

gγ . If 
we double each of these constants at the same time, we expect the steady radius of the sphe-
roid to be unaltered, since we have maintained the original ratio between cell production and 
removal. This condition is shown in Figure 4, by the gray dashed line. Note that the final ra-
dius is the same of the reference value, but the time needed to reach the steady state is signifi-
cantly reduced.    
    Then, we consider the case of a variation in the coefficient t

nγ , regulating the necrosis of 
the LTCs. The influence of this parameter is shown in Figure 5. For this coefficient, we ana-

0R
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lyze values that are ±25, ±50 and +75% of the reference value. As shown in the figure, the 
variation of  t

nγ   has a very little effect on the resulting growth curves. The shape of the curve 
is not significantly altered and the final radius has a variation of less than 5%. This is proba-
bly due to the fact that this term is active on a population of TCs that is still alive, but it is lo-
cated in a region of the spheroid where the nutrient level is below the critical threshold.  

 
 

Figure 3: Spheroid growth curves for different critical levels of oxygen. 
 

 
 

Figure 4: Spheroid growth curves for different values of the growth coefficient. 
 
This condition is poorly encountered in the spheroids at this stage of their growth [14], result-
ing in the small influence of this parameter.     
    The fifth parameter that we study is the lysis coefficient t

lλ . Figure 6 shows the results of 
considering values for this parameter that are ±25, ±50 and ±75% of its reference value. We 
first observe that the effects of varying the parameter only appear after day 8 in the simulation. 
This is consistent with the onset of a necrotic population inside the spheroid, which occurs 
after the first days of the simulation. These results show that the value of the lysis coefficient 
has a significant impact on the spheroid final radius. Notably, there is a saturation effect for 
high values of t

lλ . This may be due to the limited amount of NTCs that exists in the necrotic 
core at fixed t

nγ , and that can therefore undergo lysis. 

ox
critω

t
gγ
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Figure 5: Spheroid growth curves for different values of the necrosis coefficient. 
 

         

Figure 6: Spheroid growth curves for different values of the lysis coefficient. 
 
     Finally, we study the effects of varying α  in the mathematical expression for Σ . The val-
ue of the derivative ′Σ  is directly proportional to this parameter, as shown in [12]. We vary 
the value of α for the ±25, ±50 and ±75% respect to its reference value. Even though we ap-
ply a significant variation, there is no apparent effect in the growth curves, which appear su-
perimposed (results not shown). This result may point to the fact that the dynamics of the 
system, at least for the set of parameters considered, is mainly governed by the constitutive 
relations for the mass exchange between the phases. 
    

 

4 CONCLUSIONS 
In this work, we have performed a parametric study on a recent mathematical model for 

tumor spheroid growth [12]. The influence of a set of parameters on the growth curves of the 
spheroids has been evaluated, and we have provided a discussion of the results. In summary, 
some of the parameters show a little effect on the growth dynamics, such as the mechanical 

t
nγ

t
lλ
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coefficient α  and the coefficient related to necrosis. On the other hand, other parameters have 
a significant impact on the final radius reached by the spheroids, namely the critical oxygen 
level, the coefficient related to growth and the coefficient related to lysis. 

This work is certainly open to a number of improvements. In particular, we considered on-
ly one nutrient species, namely oxygen, limiting the growth of the tumor mass. Even though 
the influence of other chemicals is implicitly incorporated in the mass exchange term in (5), 
the inclusion of different nutrients, growth and necrosis factors could provide additional in-
sights into the evolution of the tumor system [15,16]. Moreover, as it is common in the litera-
ture, most of the laws defining the constitutive relations for the mass exchange terms are 
derived from phenomenological arguments. It is desirable that they could be inferred from 
experimental measurements and linked to their biochemical and biomechanical background. 
Finally, here we consider a simple mechanical picture of the tumor tissue, explicitly depend-
ent on the volume fraction of the TCs. Although this assumption describes conveniently the 
experimental data, it does not take into account several phenomena related to the mechanics 
of cell interactions at the macroscale, such as their rearrangement after the breakage of the 
cellular bonds [17]. 

In the future, we aim to design a new set of experiments that will provide better estimates 
of the model parameters and help the derivation of the constitutive relations. A better charac-
terization of the interactions between the cancer cells and their microenvironment should offer 
important insights into the understanding of the disease, and for designing new treatments. 
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