301 research outputs found
Intensity-based analysis of dual-color gene expression data as an alternative to ratio-based analysis to enhance reproducibility
Background: Ratio-based analysis is the current standard for the analysis of dual-color microarray data. Indeed, this method provides a powerful means to account for potential technical variations such as differences in background signal, spot size and spot concentration. However, current high density dual-color array platforms are of very high quality, and inter-array variance has become much less pronounced. We therefore raised the question whether it is feasible to use an intensity-based analysis rather than ratio-based analysis of dual-color microarray datasets. Furthermore, we compared performance of both ratio- and intensity-based analyses in terms of reproducibility and sensitivity for differential gene expression.Results: By analyzing three distinct and technically replicated datasets with either ratio- or intensity-based models, we determined that, when applied to the same dataset, intensity-based analysis of dual-color gene expression experiments yields 1) more reproducible results, and 2) is more sensitive in the detection of differentially expressed genes. These effects were most pronounced in experiments with large biological variation and complex hybridization designs. Furthermore, a power analysis revealed that for direct two-group comparisons above a certain sample size, ratio-based models have higher power, although the difference with intensity-based models is very small.Conclusions: Intensity-based analysis of dual-color datasets results in more reproducible results and increased sensitivity in the detection of differential gene expression than the analysis of the same dataset with ratio-based analysis. Complex dual-color setups such as interwoven loop designs benefit most from ignoring the array factor. The applicability of our approach to array platforms other than dual-color needs to be further investigated. © 2010 Bossers et al; licensee BioMed Central Ltd
Proper genomic profiling of (BRCA1-mutated) basal-like breast carcinomas requires prior removal of tumor infiltrating lymphocytes
BRCA1-mutated breast carcinomas may have distinct biological features, suggesting the involvement of specific oncogenic pathways in tumor development. The identification of genomic aberrations characteristic for BRCA1-mutated breast carcinomas could lead to a better understanding of BRCA1-associated oncogenic events and could prove valuable in clinical testing for BRCA1-involvement in patients. Methods: For this purpose, genomic and gene expression profiles of basal-like BRCA1-mutated breast tumors (n=27) were compared with basal-like familial BRCAX (non-. BRCA1/. 2/. CHEK2*1100delC) tumors (n=14) in a familial cohort of 120 breast carcinomas. Results: Genome wide copy number profiles of the BRCA1-mutated breast carcinomas in our data appeared heterogeneous. Gene expression analyses identifi
Expression microarray analysis and oligo array comparative genomic hybridization of acquired gemcitabine resistance in mouse colon reveals selection for chromosomal aberrations
Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures
DNA supercoiling is an inherent consequence of twisting DNA and is critical for regulating gene expression and DNA replication. However, DNA supercoiling at a genomic scale in human cells is uncharacterized. To map supercoiling we used biotinylated-trimethylpsoralen as a DNA structure probe to show the genome is organized into supercoiling domains. Domains are formed and remodeled by RNA polymerase and topoisomerase activities and are flanked by GC-AT boundaries and CTCF binding sites. Under-wound domains are transcriptionally active, enriched in topoisomerase I, “open” chromatin fibers and DNaseI sites, but are depleted of topoisomerase II. Furthermore DNA supercoiling impacts on additional levels of chromatin compaction as under-wound domains are cytologically decondensed, topologically constrained, and decompacted by transcription of short RNAs. We suggest that supercoiling domains create a topological environment that facilitates gene activation providing an evolutionary purpose for clustering genes along chromosomes
DNA copy number profiling reveals extensive genomic loss in hereditary BRCA1 and BRCA2 ovarian carcinomas
Background: Few studies have attempted to characterise genomic changes occurring in hereditary epithelial ovarian carcinomas
(EOCs) and inconsistent results have been obtained. Given the relevance of DNA copy number alterations in ovarian oncogenesis
and growing clinical implications of the BRCA-gene status, we aimed to characterise the genomic profiles of hereditary and
sporadic ovarian tumours.
Methods: High-resolution array Comparative Genomic Hybridisation profiling of 53 familial (21 BRCA1, 6 BRCA2 and 26 non-
BRCA1/2) and 15 sporadic tumours in combination with supervised and unsupervised analysis was used to define common and/or
specific copy number features.
Results: Unsupervised hierarchical clustering did not stratify tumours according to their familial or sporadic condition or to their
BRCA1/2 mutation status. Common recurrent changes, spanning genes potentially fundamental for ovarian carcinogenesis,
regardless of BRCA mutations, and several candidate subtype-specific events were defined. Despite similarities, greater
contribution of losses was revealed to be a hallmark of BRCA1 and BRCA2 tumours.
Conclusion: Somatic alterations occurring in the development of familial EOCs do not differ substantially from the ones occurring
in sporadic carcinomas. However, some specific features like extensive genomic loss observed in BRCA1/2 tumours may be of
clinical relevance helping to identify BRCA-related patients likely to respond to PARP inhibitorsThis study was funded by the Fondo de Investigacio´n
Sanitaria (FIS), Instituto de Salud Carlos III (grants CP07/00113
and PS09/01094
Semi-parametric Expected Shortfall Forecasting
Intra-day sources of data have proven effective for dynamic volatility and tail risk estimation. Expected shortfall is a tail risk measure, that is now recommended by the Basel Committee, involving a conditional expectation that can be semi-parametrically estimated via an asymmetric sum of squares function. The conditional autoregressive expectile class of model, used to indirectly model expected shortfall, is generalised to incorporate information on the intra-day range. An asymmetric Gaussian density model error formulation allows a likelihood to be developed that leads to semiparametric estimation and forecasts of expectiles, and subsequently of expected shortfall. Adaptive Markov chain Monte Carlo sampling schemes are employed for estimation, while their performance is assessed via a simulation study. The proposed models compare favourably with a large range of competitors in an empirical study forecasting seven financial return series over a ten year period
Analysis of severely affected patients with dihydropyrimidine dehydrogenase deficiency reveals large intragenic rearrangements of DPYD and a de novo interstitial deletion del(1)(p13.3p21.3)
Evaluation of genome coverage and fidelity of multiple displacement amplification from single cells by SNP array
The scarce amount of DNA contained in a singe cell is a limiting factor for clinical application of preimplantation genetic diagnosis mainly due to the risk of misdiagnosis caused by allele dropout and the difficulty in obtaining copy number variations in all 23 pairs of chromosomes. Multiple displacement amplification (MDA) has been reported to generate large quantity of products from small amount of templates. Here, we evaluated the fidelity of whole-genome amplification MDA from single or a few cells and determined the accuracy of chromosome copy number assessment on these MDA products using an Affymetrix 10K 2.0 SNP Mapping Array. An average coverage rate (86.2%) from single cells was obtained and the rates increased significantly when five or more cells were used as templates. Higher concordance for chromosome copy number from single cells could be achieved when the MDA amplified product was used as reference (93.1%) than when gDNA used as reference (82.8%). The present study indicates that satisfactory genome coverage can be obtained from single-cell MDA which may be used for studies where only a minute amount of genetic materials is available. Clinically, MDA coupled with SNP mapping array may provide a reliable and accurate method for chromosome copy number analysis and most likely for the detection of single-gene disorders as well
Arabidopsis thaliana POLYOL/MONOSACCHARIDE TRANSPORTERS 1 and 2: fructose and xylitol/H+ symporters in pollen and young xylem cells
The genome of Arabidopsis thaliana contains six genes, AtPMT1 to AtPMT6 (Arabidopsis thaliana POLYOL/MONOSACCHARIDE TRANSPORTER 1–6), which form a distinct subfamily within the large family of more than 50 monosaccharide transporter-like (MST-like) genes. So far, only AtPMT5 [formerly named AtPLT5 (At3g18830)] has been characterized and was shown to be a plasma membrane-localized H+-symporter with broad substrate specificity. The characterization of AtPMT1 (At2g16120) and AtPMT2 (At2g16130), two other, almost identical, members of this transporter subfamily, are presented here. Expression of the AtPMT1 and AtPMT2 cDNAs in baker's yeast (Saccharomyces cerevisiae) revealed that these proteins catalyse the energy-dependent, high-capacity transport of fructose and xylitol, and the transport of several other compounds with lower rates. Expression of their cRNAs in Xenopus laevis oocytes showed that both proteins are voltage-dependent and catalyse the symport of their substrates with protons. Fusions of AtPMT1 or AtPMT2 with the green fluorescent protein (GFP) localized to Arabidopsis plasma membranes. Analyses of reporter genes performed with AtPMT1 or AtPMT2 promoter sequences showed expression in mature (AtPMT2) or germinating (AtPMT1) pollen grains, as well as in growing pollen tubes, hydathodes, and young xylem cells (both genes). The expression was confirmed with an anti-AtPMT1/AtPMT2 antiserum (αAtPMT1/2) raised against peptides conserved in AtPMT1 and AtPMT2. The physiological roles of the proteins are discussed and related to plant cell wall modifications
Opening the archives for state of the art tumour genetic research: sample processing for array-CGH using decalcified, formalin-fixed, paraffin-embedded tissue-derived DNA samples
<p>Abstract</p> <p>Background</p> <p>Molecular genetic studies on rare tumour entities, such as bone tumours, often require the use of decalcified, formalin-fixed, paraffin-embedded tissue (dFFPE) samples. Regardless of which decalcification procedure is used, this introduces a vast breakdown of DNA that precludes the possibility of further molecular genetic testing. We set out to establish a robust protocol that would overcome these intrinsic hurdles for bone tumour research.</p> <p>Findings</p> <p>The goal of our study was to establish a protocol, using a modified DNA isolation procedure and quality controls, to select decalcified samples suitable for array-CGH testing. Archival paraffin blocks were obtained from 9 different pathology departments throughout Europe, using different fixation, embedding and decalcification procedures, in order to preclude a bias for certain lab protocols. Isolated DNA samples were subjected to direct chemical labelling and enzymatic labelling systems and were hybridised on a high resolution oligonucleotide chip containing 44,000 reporter elements.</p> <p>Genomic alterations (gains and losses) were readily detected in most of the samples analysed. For example, both homozygous deletions of 0.6 Mb and high level of amplifications of 0.7 Mb were identified.</p> <p>Conclusions</p> <p>We established a robust protocol for molecular genetic testing of dFFPE derived DNA, irrespective of fixation, decalcification or sample type used. This approach may greatly facilitate further genetic testing on rare tumour entities where archival decalcified, formalin fixed samples are the only source.</p
- …
