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Chromosomal copy number heterogeneity predicts
survival rates across cancers
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Survival rates of cancer patients vary widely within and between malignancies. While genetic

aberrations are at the root of all cancers, individual genomic features cannot explain these

distinct disease outcomes. In contrast, intra-tumour heterogeneity (ITH) has the potential to

elucidate pan-cancer survival rates and the biology that drives cancer prognosis. Unfortu-

nately, a comprehensive and effective framework to measure ITH across cancers is missing.

Here, we introduce a scalable measure of chromosomal copy number heterogeneity (CNH)

that predicts patient survival across cancers. We show that the level of ITH can be derived

from a single-sample copy number profile. Using gene-expression data and live cell imaging

we demonstrate that ongoing chromosomal instability underlies the observed heterogeneity.

Analysing 11,534 primary cancer samples from 37 different malignancies, we find that copy

number heterogeneity can be accurately deduced and predicts cancer survival across tissues

of origin and stages of disease. Our results provide a unifying molecular explanation for the

different survival rates observed between cancer types.
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The abundance and diversity of genomic aberrations in
cancers is enormous1. Identifying common characteristics
across cancer genomes that define patient survival there-

fore remains challenging. In particular, malignancies from dif-
ferent cancer types are molecularly highly distinct; therefore,
most biomarkers are restricted to a single type of cancer2. The
hallmark process of genomic instability and its direct con-
sequence ITH are generic features of cancers that might associate
with poor prognosis, and could stratify patients and inform on
tumour biology in a pan-cancer setting3–6.

Genomic instability and intra-tumour heterogeneity (ITH)
occur at different levels, ranging from single-nucleotide var-
iations (SNVs) to chromosomal losses and duplications. Most
studies of ITH have focused on the single-nucleotide scale,
and some reported a relation to survival7–12. However, the
reliability of these methods based on mutation frequency
calling is under debate13–15. In cancers from various organs, it
has been shown that chromosomal copy number variations
(CNVs) are heterogeneous within tumours16–19, and might be
more important for patient outcome18,20. However, a robust
and comprehensive method to infer ITH from a single copy
number measurement is currently lacking, limiting the pos-
sibility to study large numbers of patients in a pan-cancer
setting.

Here, we introduce an approach to quantify ITH from a
single copy number profile. This method allowed us to
uncover that ITH at the copy number level results from
ongoing chromosomal instability and underlies cancer prog-
nosis in individual cancer types as well as across distinct
malignancies.

Results
Accurate ITH measurement from a single copy number profile:
CNH. To derive ITH from a single tissue sample copy number
profile, we postulate that each individual cell has strictly integer
chromosomal copy numbers (i.e. 0, 1, 2,…). Hence, completely
homogeneous samples also have integer copy number values, and
deviations from integer values in an absolute copy number profile
reflect heterogeneity in the malignant cell population (Fig. 1a). To
quantify copy number heterogeneity (CNH) within malignancies,
we infer tumour ploidy, sample purity and absolute copy num-
bers from a normalized and segmented copy number profile21–23.
For a range of ploidies (1.5, 1.55,.., 5) and malignant cell purities
(0.2, 0.21,.., 1), we calculate the absolute copy number profile,
measure the distance of each segment to the closest integer and
determine the average distance weighted by segment lengths (see
‘Methods’ for details). CNH is then defined as the minimum of
the average weighted distances taken over all ploidies and purities
(Fig. 1b).

CNH can be interpreted as the average fraction of malignant
cells that differ by one copy from the mode copy number value at
each position of the genome. It integrates the fraction of
heterogeneous malignant cells and the fraction of the genome
that is heterogeneous in one quantitative score. We verify with
single-cell karyotype sequencing, multi-region copy number data
and simulated copy number profiles that CNH is accurately
determined by our inference procedure (Fig. 1c and Supplemen-
tary Fig. 1a–c)18,24. Non-malignant cells in a cancer sample can
affect estimates of ITH14. We expand our simulations by
including increasing fractions of non-malignant cells and find
that CNH is robust to varying purities (malignant cell fraction
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Fig. 1 Intra-tumour heterogeneity measurement from single copy number profile. a Example of an absolute copy number profile. Deviations of absolute
copy numbers from integer values are indicated by the shaded areas and reflect heterogeneity. b Scheme showing the formal definition of copy number
heterogeneity (CNH). The minimum is taken over purity and ploidy. w, segment width. d, distance of segment to the closest integer. c CNH obtained from
the pooled reads of single cells (quasi-bulk) correlates well to CNH determined from direct comparison of karyotypes of individual cells. Spearman’s rank
correlation is reported. Red line is the diagonal, ‘CNH, single cell’= ‘CNH, quasi-bulk’. d CNH of simulated copy number profiles can be accurately inferred,
independent of tumour purity. Source data are provided as a Source Data file.
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between 0.2 and 1, Fig. 1d). Next, we assess the independence of
tumour purity in a dataset containing 253 samples from patients
with ovarian cancer, where tumour purity was determined
separately from the copy number data25. Inference of CNH using
purity as a free parameter (our standard procedure), or fixing
purity around the reported value for each sample gives highly
concordant results (Supplementary Fig. 1d, e). More generally,
multiple combinations of ploidy and purity can result in good fits
of absolute copy number profiles, i.e. with small segment
distances to integer values (Supplementary Fig. 1f, g). Impor-
tantly, CNH is by definition essentially identical for the different
solutions (Supplementary Fig. 1h, i). We further note that CNH
can be inferred from allele-specific as well as total copy numbers
(default), and that filtering of noisy segments can be implemented
before the inference of CNH to improve accuracy (Supplementary
Figs. 2a–h). Finally, we show that CNH can be accurately
determined from stored FFPE material, independent of the
measurement platform used to obtain copy number data
(Supplementary Fig. 2i). A copy number profile derived from a
single sample with unknown cancer cell purity is thus sufficient to
accurately determine CNH.

Ongoing chromosomal instability underlies CNH. Does het-
erogeneity in copy numbers result from ongoing chromosomal
instability, or from the coexistence of multiple clones that emerged
at some point during cancer evolution9,24,26,27? Gene-expression
profiles can be used as a proxy of chromosomal instability in

malignancies28. We explore the relation between chromosomal
instability and CNH in an unbiased way using gene expression and
copy number data from The Cancer Genome Atlas (TCGA) (8968
patients with copy number and gene-expression data). We deter-
mine CNH from the copy number profiles of all primary cancers
and correlate CNH to the expression level of all genes (Supple-
mentary Data 1, 2). The correlation of gene-expression levels is
close to normally distributed, but the slight enrichment of positive
correlations suggests a group of genes related to CNH (Fig. 2a).
Indeed, the top genes positively correlated with CNH form a
functionally related cluster, including AURKA, a gene encoding
a kinase that is targeted to mitotic spindle microtubules by TPX2 in
a highly conserved way (Fig. 2b)29–31. Gene ontology analysis of
the tail of the distribution (genes with Spearman’s rank correlation
>0.42) reveals that high CNH is characterized by chromosomal
instability (Fig. 2c and Supplementary Fig. 3a–c)28,32,33. In con-
trast, no particular ontology is significantly associated with the
most negatively correlated genes. This gene-expression analysis
suggests that chromosomal instability drives CNH in a malignancy.
Using live imaging of cell divisions in organoids, we find that
indeed missegregation of chromosomes is associated with CNH
(Supplementary Fig. 3d). While our results indicate that chromo-
somal instability underlies CNH, we note that other factors also
contribute to CNH. For example, we find that haematological
malignancies show evidence for high chromosomal instability and
low CNH, relative to other cancer types (Supplementary Fig. 3e).
The competition between malignant cells in haematological
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malignancies is less spatially constrained, which facilitates selective
sweeps that reduce heterogeneity and could explain the low values
of CNH observed in these malignancies34.

Next, we characterize the relation between CNH and various
genomic aberrations. As expected, heterogeneity in copy numbers
requires CNVs (Fig. 3a, b)35. Furthermore, we identify mutations in

TP53 as most significantly associated with high CNH, suggesting
that the ability of a cell to cope with aneuploidy is also vital
to CNH (P < 10−150, Fig. 3a, c). TP53 is the most frequently
mutated gene across cancers and the safeguard of genome
stability, protecting against both CNVs and SNVs35. Indeed,
we find that CNH positively correlates with mutational load,
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except for microsatellite-instable (MSI) tumours in which the
correlation is negative (Fig. 3a, d, e). Genome doubling can
enhance chromosomal instability36. We find higher CNH for
genome-doubled malignancies, which further underlines the
relation between CNH and chromosomal instability (Fig. 3a, f).

CNH is a unifying predictor of survival for cancer patients.
Genomic heterogeneity in the malignant cell population is a
source for cancer evolution, regardless of the tissue of origin. As
cancer evolution impairs patient survival and treatment efficacy,
we asked if our CNH measure associates with survival for the
different cancer types documented in TCGA37. For each sample,
we calculate the CNH and rank-order patients accordingly. We
split patients into two groups of equal size for each type of
malignancy. We find that CNH distinguishes patients with poor
and good prognosis in highly different cancer types, such as
uterine corpus endometrial carcinoma (UCEC), acute myeloid
leukaemia (LAML), sarcoma (SARC) and brain lower-grade
glioma (LGG) (Fig. 4a). For the large majority of cancer types,
CNH is associated with poor prognosis for progression-free
interval (PFI) and overall survival (OS) (Fig. 4b and Supple-
mentary Figs. 4, 5a).

The ITH of the cancer genomes of all patients can be compared
on a continuous quantitative scale by CNH. We explored the
variation in CNH and survival in a cancer-type agnostic setting,

including 10,208 primary cancers with copy number data in
TCGA. The median CNH of all cancers is 0.051 and ranges from
0.003 to 0.23 (Fig. 5a). We split patients rank-ordered by the
CNH of their primary cancer in five groups of equal size and
determine the survival rates for each group. We find that survival
rates decrease monotonically with increasing CNH (Fig. 5b).
Importantly, we find that it is heterogeneity at the CNV level
that determines the poor prognosis, not the mere presence of
CNVs (Fig. 5c). CNH also outperforms other measures of ITH
(ABSOLUTE ITH38, MATH11, PyClone10, EXPANDS12 and
S-score19), as well as the overall amount of CNVs35, in predicting
survival across cancers (Supplementary Fig. 6). Hence, CNH
accurately predicts survival across cancer types, with a hazard
ratio of 2.6 (2.3–3.0) for the 20% patients with the most
heterogeneous malignancies compared to the 20% patients with
the most homogeneous malignancies (Fig. 5d). Importantly, also
in an independent dataset from the International Cancer Genome
Consortium (ICGC), we find that CNH explains survival rates
across cancers (Fig. 5e, f)1.

The variation in CNH and the relation to survival might be
confounded by other tumour or clinical characteristics, such as
cancer type, stage of the disease and MSI status. We address the
relation of CNH and survival in the context of these three
observables. MSI tumours are thought to be driven by defects
in the DNA repair machinery, rather than by chromosomal
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instability. Nevertheless, also for this molecularly defined
subgroup, patients with the most heterogeneous cancers have
the poorest prognosis (Fig. 6). For 7972 cancers, the stage is
reported in TCGA37. We find that CNH increases with stage
(median CNH per stage: stage I, 0.038; stage II, 0.062; stage III,
0.067; stage IV, 0.075; Fig. 7a). The positive correlation between
CNH and stage suggests that heterogeneity in copy numbers
fosters progression. Nevertheless, within each stage, the survival
rates decrease with increasing CNH (Fig. 7b, c), showing that
differences in survival rates cannot be explained simply from the
stage at diagnosis. Malignancies from different cancer types vary
in CNH (Supplementary Fig. 4). Strikingly, the variation in CNH
between cancer types correlates to the variation in survival rates
of the cancer types (Fig. 8). CNH thus provides a potential
molecular explanation for the remarkable differences in survival
rates between cancer types. Finally, multivariate analysis,
including CNH, aneuploidy score, genome doubling, cancer type,

MSI status, stage, age, gender and mutation status of TP53, KRAS,
MYC, PTEN, VHL, PIK3CA, APC and BRAF, shows that CNH is
a pan-cancer prognostic biomarker for both the PFI and OS
(Supplementary Table 1 and Supplementary Fig. 5b–d).

Discussion
The CNH measure introduced here allows direct comparison of
all cancer genomes on a quantitative and comprehensive scale.
Our analyses of ITH in the pan-cancer TCGA and ICGC cohorts
suggest that heterogeneity at the copy number level is a universal
predictor for survival of cancer patients, that emerges from
ongoing chromosomal instability in interplay with cell intrinsic
and external selective pressures.

The ITH of a cancer can be accurately inferred from a single
copy number measurement, using the CNH measure introduced in
this paper. We extensively validated the accuracy and robustness of
our method using simulations, single-cell karyotype sequencing,
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Fig. 5 CNH predicts pan-cancer survival rates. a Distribution of copy number heterogeneity (CNH) of 10,208 primary cancers with copy number data in
TCGA. b Kaplan–Meier plots of overal survival (OS) of patients split into five groups of equal size based on rank-ordered CNH of their primary cancer. The
most homogeneous and most heterogeneous groups are compared by the two-sided log-rank test. c Kaplan–Meier plots of OS of CNH and aneuploidy
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multi-region CNV data, re-sampling from the same tumour and
benchmarking to other ITH methods. However, we note that a
possible limitation of single-sample measures is sampling bias39.

Single-sample CNV measurements can be obtained from
stored FFPE material at relatively low costs40, and we indeed
demonstrated that CNH can be successfully inferred from FFPE-
derived data. Our method thus has potential to readily translate
into the clinic. However, we note that measurements from FFPE
material are typically more noisy than measurements from fresh
frozen material, and that the survival analyses in the present study
are all based on fresh frozen material.

Analyses of gene-expression data and live imaging of cell
divisions in organoids revealed that ongoing chromosomal
instability importantly contributes to CNH. Ongoing chromoso-
mal instability implies that continuously new karyotypes are
generated. Hence, our results suggest that ITH in CNVs cannot
be properly understood as, and quantified by, coexistence of a few
clones, as has been reported for ITH determined from SNVs10,12.
The relation between ITH in CNVs and ITH in SNVs could be an
interesting topic for future studies.

Chromosomal instability has been shown to be a negative
predictor of survival in several cancer types28. Aneuploidy,
immune escape and inflammation have been proposed as
mechanisms through which chromosomal instability results in
poor prognosis20,41. Our results provide an alternative explana-
tion: chromosomal instability generates genomic diversity in the
malignant cell population on which natural selection acts.

Although we find an important relation between CNH and
chromosomal instability, we stress that these are not identical
observables. Chromosomal instability is a process at the cell level;
CNH is a state at the level of the malignant cell population. While
chromosomal instability increases ITH, other cell intrinsic and
external selective pressures can reduce the heterogeneity, e.g. dif-
ferences in fitness between malignant cells and immune suppres-
sion. Further understanding of the relation between CNH, selection
and chromosomal instability might be obtained by sampling at
multiple time points and interpreting the results with evolutionary
models. For example, in a recent publication by Minussi et al., it was
concluded from extensive karyotyping of single cells from triple-
negative breast cancers combined with mathematical modelling,
that ongoing chromosomal instability persists during expansion of
primary cancers42, in line with our conclusions.

CNH increases with stage, stratifies patients for survival within
most cancer types and across molecular subgroups and explains

why some cancer types have a dismal prognosis compared to other
cancer types. The covariance of CNH with stage, and also grade,
reduces the independent predictive value of CNH in multivariate
analyses. On the other hand, the covariance of CNH with stage
and survival implies that progression of disease can be assessed
from the molecular properties of the primary cancer. CNH could
thus provide a unifying molecular explanation for variations in
survival time of patients, from a cancer evolution perspective.

Methods
Data sets. TCGA—Segmented copy number data, gene-expression data, mutation
data and MSI data of TCGA were downloaded from http://gdac.broadinstitute.org/.
In all analyses, only samples from a primary tumour or a primary blood-derived
cancer were included (n= 10,578 with copy number data). We applied noise fil-
tering based on segment noise (described below), filtering out 370 samples (n=
10,208 that pass quality control).

The copy number data from the ‘genome_wide_snp_6-segmented_scna_hg19’
files were used. The MSI status of each sample was obtained from the ‘patient.
microsatellite_instability_test_results.microsatellite_instability_test_result.
mononucleotide_and_dinucleotide_marker_panel_analysis_status’ variable from
the ‘Merge_Clinical’ data files. For the gene-expression data, the RSEM from the
‘illuminahiseq_rnaseqv2-RSEM_genes’ files was used. Mutation data were obtained
from the ‘Mutation_Packager_Oncotated_Calls.Level_3’ files. Mutations annotated
as SNPs in columns ‘dbSNP_Val_Status’ and as Silent in columns
‘Variant_Classification’ were excluded.

Tangent-normalized probe copy numbers and raw SNP probe data were
downloaded from https://portal.gdc.cancer.gov/legacy-archive. Probe intensities
from .CEL raw data files of SARC, UCEC, LGG and LAML were processed using
Affymetrix Power Tools and allele-specific copy numbers were calculated using
HAPSEG (version 1.1.1) and ABSOLUTE (version 1.0.6).

Genome doubling, aneuploidy score and mutational load, and ploidy, purity
and ITH, as determined by ABSOLUTE using copy number and mutation data,
were obtained from Thorsson et al.38. Patient progression and survival times,
disease stages, grade of disease, age and gender were obtained from Liu et al.37.
Chromothripsis determined per chromosome from whole-genome sequencing was
obtained of 759 TCGA patients from Cortes-Ciriano et al.43.

BriTROC-1—The ovarian cancer dataset was obtained from the corresponding
author and contains 253 primary and relapsed ovarian cancer samples from 132
patients in the British Translational Research Ovarian Cancer Collaborative
(BriTROC-1) cohort25 (Supplementary Fig. 1d, e).

TRACERx—The multi-region non-small-cell lung cancer data from TRACERx
consist of 303 samples from 100 patients and the copy number data were obtained
from Jamal-Hanjani et al.18 (Supplementary Fig. 1a).

CAIRO2—Copy-number data of 96 patients from the CAIRO2 trial44 were
measured with arrayCGH by Haan et al.45 (available from expression omnibus
(GEO), accession code GSE36864) and shallow–whole-genome sequencing by
Smeets et al.46 (available from EGA, accession code EGAS00001002617). We used
these data for technical validation of our method (Supplementary Fig. 2i).

Single cells—Single-cell karyotype sequencing of seven samples from colorectal
cancer (CRC) patients was performed24. Acquisition of patient samples was
conducted in accordance with the Declaration of Helsinki with the approval of the
Amsterdam UMC, VU University Medical Ethical Testing Committee (2016.254-
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Fig. 6 Distribution of CNH and survival curves of microsatellite-instable cancers. a Distribution of copy number heterogeneity (CNH) for 558
microsatellite-instable (MSI) tumours (bars) versus all 10,208 primary cancers (line) in TCGA. Kaplan–Meier plots of progression-free interval (b) and
overall survival (c). Patients with MSI tumours are split into three groups of equal size based on rank-ordered CNH in the survival analysis. The most
homogeneous (blue) and most heterogeneous (red) groups are compared by the two-sided log-rank test. Source data are provided as a Source Data file.
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Fig. 7 CNH increases with stage and is predictive within each stage. a Distribution of copy number heterogeneity (CNH) per stage, for 7792 primary
cancers in TCGA with known stage and copy number data. Kaplan–Meier plots of progression-free interval (b) and overall survival (c). Per stage, patients
are split into three groups of equal size based on rank-ordered CNH in the survival analysis. The most homogeneous (blue) and most heterogeneous (red)
groups are compared by the two-sided log-rank test. Source data are provided as a Source Data file.
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NL57226.029.16 and 2017-302(A2018)). All patients provided written informed
consent. In addition, single-cell data from four CRC samples and 12 healthy colon
and CRC-derived organoids were obtained from Bolhaquiero et al.24.

Organoids for live imaging—Imaging of four oesophageal cancer-derived
organoid lines (CAM277, CAM408, CAM479 and CAM486) and two ovarian
cancer-derived organoid lines (HGS-1 and HGS-3.1) was performed as described
previously24. Briefly, the percentage of cell divisions with chromosomal
missegregation was recorded following overnight time-lapse imaging of organoids
expressing H2B-Dendra. Genomic DNA was isolated from each organoid line and
measured with Illumina SNP chips GSA v3. GenomeStudio was used with standard
settings to obtain copy numbers from the SNP data. In addition, live-imaging data
of 12 CRC and normal intestinal organoid lines, with the corresponding single-cell
karyotype sequencing data to calculate CNH, were obtained from Bolhaquiero
et al.24 (Supplementary Fig. 3d).

ICGC—Processed copy number somatic mutation data files were downloaded to
the Collaboratory cancer cloud. Segmented copy number values were obtained from
the ‘TCNExact’ variable. Cancer types were defined according to ICGC project code.
Patient OS data were obtained from the ICGC data portal: https://dcc.icgc.org/
releases/PCAWG/clinical_and_histology. Variables ‘donor_survival_time’ (OS) and
‘donor_vital_status’ (censoring) from the file ‘pcawg_donor_clinical_August2016_v9.
xlsx’ were used. A total of 1326 patients from 19 studies had copy number and
survival data, and were not part of TCGA (Figs. 5e, f and 8c).

PyClone and EXPANDS—Single-sample measurements of ITH by PyClone10

and EXPANDS12 of 1152 and 1095 primary cancers, respectively, of pan-cancer
TCGA data, were obtained from Andor et al.9.

Copy-number heterogeneity (CNH). Input—CNH is calculated from a single
segmented whole-genome copy number profile. The copy number data must have
been obtained from a bulk sample, i.e. not from a single cell.

Calculation—The segmented copy number profile is first normalized by
dividing through the mean copy number. The resulting relative copy number ri of
segment i with width wi depends on the absolute copy number qi of segment i, on
the average sample ploidy τ:

τ ¼
∑
i
wiqi

∑
i
wi

ð1Þ

and on the purity of malignant cells in the sample α:

ri ¼
αqi þ 2ð1� αÞ
ατ þ 2ð1� αÞ ð2Þ

To derive the CNH from the measured relative copy numbers using this
expression, we note that qi are integers for samples without heterogeneity, and
deviations from integer values di:

di ¼ jqi � round qi
� �j ð3Þ

reflect heterogeneity in the sample. The rationale to find the CNH is hence
minimization of the deviations of qi from integer values:

CNH ¼ minα;τ

∑
i
diwi

∑
i
wi

0

@

1

A ð4Þ

Minimization over tumour purity and ploidy is done as these are typically
unknown sample properties. Using the experimentally obtained relative copy

numbers ri and varying tumour purity (α ¼ 0:2; 0:21; ¼ ; 1) and tumour ploidy
(τ ¼ 1:5; 1:55; ¼ ; 5) over biologically relevant ranges, one finds the CNH of a
sample by solving Eqs. (1–4).

Samples with known purity or ploidy—A sample’s purity or ploidy can be
(approximately) known from independent measurements. In that case,
minimization in Eq. (4) might be restricted to a specific range or fixed value for
each sample to find CNH. For example, in the analysis of the Ovarian cancer
dataset, we restricted the purity to a narrow range of 10% around the reported
purity for each sample (Supplementary Fig. 1d, e). The ploidy and purity
determined by ABSOLUTE were used to calculate ‘CNH ABSOLUTE’
(Supplementary Fig. 6a, c).

Robustness of inference—Inference of CNH can be performed, also if a sample
contains no or few CNVs. With few CNVs, a low value of CNH will be found
(Supplementary Fig. 3b). Furthermore, noise in the CNV data affects CNH, but the
inference can be optimized to handle noise as detailed below and in Supplementary
Fig. 2. Only if all CNVs occur at the same frequency, a scenario we did not come
across, the inference is not applicable. CNH is designed as a genome-wide measure.
Although segments of the genome that are subject to high noise can be excluded, in
general, we recommend against applying the CNH method to single genomic
segments or chromosome arms.

Invariance of CNH—CNH is defined as the average segment distance to integer
values of the absolute copy number profile. A translation of the absolute copy
number profile by an integer value hence leaves CNH invariant. Changing the
ploidy by an integer value and adjusting the purity accordingly (puritynew=−2/
ploidynew+ purityinferred+ 2/ploidyinferred) approximately results in translation of
the copy number profile by an integer value. Indeed, CNH is highly correlated to
the CNH calculated from the inferred ploidy +/−1 in TCGA data (Supplementary
Fig. 1f–i). In these analyses, ploidy is fixed to +/−1 the inferred ploidy, and for the
samples for which the transferred ploidy is within the limits we consider
biologically relevant (1:5≤ τ ≤ 5) a grid search is done for purity, and the
corresponding CNH is reported (n= 1884 for ploidy +1; n= 4454 for ploidy −1).

Noise filtering—CNH is inferred by default from genome-wide copy number
data. It is possible to exclude certain regions of the genome (segments) from the
CNH inference, e.g. if local noise is high. The precision at which the copy number
value of a segment can be estimated is quantified by the standard deviation of the
mean (σμ) of the distribution of probe/bin copy number values around a copy
number segment (Supplementary Fig. 2a). Noise filtering can be applied
per segment and on the mean σμ of a sample. For the TCGA data, we filtered out
samples with 〈σμ〉 > 0.006 (removing the 370 noisiest samples; average is weighted
by segment length) and segments with σμ > 0.01 (removing the noisiest segments,
composing on average 3.5% of the genome; Supplementary Fig. 2b–f).

Simulations. Computer simulations were developed to verify the accuracy of the
CNH measurement. In these simulations, a malignancy with input CNH h is
simulated as a collection of 109 cells. The karyotype of the cells in the malignancy is
simulated by the following procedure:

(1) The segments, with possibly different numbers of copies that together
comprise the genome of malignant cells, are either taken from a random
sample in the TCGA with a genome fraction altered of more than 50%
(Fig. 1d and Supplementary Fig. 1b) or generated as n segments of random
length (Supplementary Fig. 1c).

(2) All malignant cells are first given the same number of copies of each
segment (a homogeneous sample).

ACC

BLCA

BRCA

CESC

CHOL

COAD

DLBC

ESCA

GBM

HNSC

KICH

KIRC
KIRP

LAML

LGG
LIHC

LUAD

LUSC

MESO

OV
PAAD

PCPG
PRAD

READ

SARC

SKCM

STAD

TGCT
THCA
THYM

UCEC

UCS

UVM

0 0.05 0.1
Median CNH

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n 

5y
 O

S

 = -0.375
P = 0.032

a b

TCGA

c

BTCA-SG

CLLE-ES

CMDI-UK

EOPC-DE

ESAD-UK

GACA-CN

LICA-FR

LINC-JP
LIRI-JP

MALY-DE

ORCA-IN

OV-AUPACA-AU

PACA-CA

PAEN-AU

PAEN-IT
PBCA-DE

PRAD-UK

RECA-EU

0 0.05 0.1
Median CNH

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n 

3y
 O

S

 = -0.77
P = 1.5·10-4

ICGC

ACC BLCA

BRCA

CESC

CHOL

COAD

DLBC

ESCA

GBM

HNSC

KICH

KIRC
KIRP

LGG

LIHC

LUAD

LUSC

MESO
OV

PAAD

PCPG
PRAD READ

SARC
SKCM

STAD

TGCT

THCA

THYM

UCEC

UCS

UVM

0 0.05 0.1
Median CNH

0

0.2

0.4

0.6

0.8

1
Fr

ac
tio

n 
2y

 P
FI

 = -0.503
P  = 0.004

Fig. 8 CNH predicts survival rates of cancer types.Median copy number heterogeneity (CNH) versus the fraction of patients with 2-year progression-free
interval (PFI, a) and 5-year overall survival (OS, b) for each cancer type in TCGA. Spearman’s rank correlation is reported. The red line (shade) is a linear fit
(95% confidence interval). c Median CNH versus the fraction of patients with 3-year OS for each study in ICGC. Spearman’s rank correlation is reported.
The red line (shade) is a linear fit (95% confidence interval). Source data are provided as a Source Data file.
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(3) Heterogeneity is introduced by changing the number of copies of each
segment randomly by plus or minus one in a fraction f of the malignant
cells. For each segment, f is a random number drawn from a flat distribution
between 0 and 2*h, such that f

� � ¼ h.
(4) To include non-malignant cells in impure tumour samples, a fraction 1− α

of the malignant cells is replaced by non-malignant cells with a diploid
genome.

The average karyotype of the cells in the malignancy is determined and used to
infer CNH. For each purity and input heterogeneity, 100 malignancies were
simulated and CNH was measured. We find an excellent agreement between the
simulated input heterogeneity h and the measured CNH of the simulated
malignancies.

Gene expression and CNH. For n= 9198 samples of primary cancers, copy
number and gene-expression data were both available in TCGA (n= 8968 after
noise filtering). The expression level of each gene was correlated to CNH using
Spearman’s rank correlation. The correlation is done in a pan-cancer setting, and
we note that gene-expression patterns vary between cancer types. In total, 18,021
genes were significantly correlated with CNH (P < 0.05). The distribution of
Spearman’s ρ of all genes, however, forms an almost normal distribution (mean=
0.024; 95% confidence interval of mean= 0.022–0.027; standard deviation=
0.1523; 95% confidence interval of standard deviation= 0.1508–0.1513 for the
Gaussian fit in Fig. 2a). For the gene ontology analysis, we therefore focused on the
genes most positively correlated with CNH in the tail of the distribution (104 genes
with ρ > 0.42). To determine the gene ontologies associated with negative corre-
lation to CNH on the same number of genes, we selected the 104 most negatively
correlated genes. Gene ontologies were determined for all GO terms using the
‘Statistical overrepresentation test’ of PANTHER (http://www.pantherdb.org/;
Fig. 2c and Supplementary Fig. 3c)32,33.

Chromosomal instability was assessed in each malignancy by the
CIN70 signature28. The expression of the genes that comprise this signature was
normalized per gene by the median expression and summed per malignancy to
arrive at the CIN70 score for each malignancy (Supplementary Fig. 3e).

Gene network analysis for co-functionality of genes was performed using
GADO31. We constructed a list of 100 genes, containing the 20 genes most
positively correlated with CNH and 80 randomly picked genes, and used the
‘Function Enrichment’ option in the online tool (https://www.genenetwork.nl/) to
build the network in Fig. 2b (genes used for co-functionality analysis are indicated
in the source data of Fig. 2). The edge threshold in the network (Z-score,
representing significance in terms of the number of standard deviations and is
equivalent to P value) was set to maximum co-functionality (Z-score > 13.22). The
network in Fig. 2b only contains genes positively correlated to CNH. The Z-score
can be lowered to 7.06 before this network will contain any of the randomly
picked genes.

Genomic aberrations and CNH. The aneuploidy score quantifies the number of
chromosome arms that deviate from diploid and was correlated to CNH using
Spearman’s rank correlation (Supplementary Fig. 3a, b)35. Genome doubling and
mutational load in TCGA data were obtained from Thorsson et al.38, and the
relation to CNH was assessed by the Wilcoxon’s rank-sum test (Fig. 3a, f) and
Spearman’s rank correlation (Fig. 3a, d, e), respectively. The genome fraction
altered was defined as the fraction of the genome subject to CNVs. A segment was
considered altered if log(r) ≤−0.1 (loss) or log(r) ≥ 0.1 (gain).

For n= 9656 samples of primary cancers, copy number and mutation data were
both available in TCGA (n= 9388 after noise filtering). For all genes, samples were
grouped as either wild type or mutated. The distributions of CNH between the
wild-type and mutated groups were compared using the Wilcoxon rank-sum test.

Validation of CNH with single-cell data. Single-cell data were generated as
described in, and obtained from, Bolhaquiero et al.24. Briefly, tissue cuts were lysed
in a nuclei Suspension Buffer and stained with 10 μg ml−1 Hoechst 34580 (Sigma-
Aldrich). The lysed tissue was kept on ice for 1 h after which it was filtered
through 70- and 35-μm strainers. Nuclei were sorted on a DB FACS Fusion
sorting for G1 state in a 384-well plate containing 5 μl of mineral oil (Sigma) in
each well, and stored at −20 °C until further processing for library preparation
and sequencing. Library preparation started with a Prot K (Fisher) treatment, after
which the genomic DNA was digested with NlaIII restriction enzyme. A cell-
specific 8-bp barcode, a 3-bp random molecular barcode, the 5′ Illumina TruSeq
small RNA kit adapter and a T7 promoter was ligated. DNA of each cell was
pooled and in vitro-transcribed after which it was fragmented and reverse-tran-
scribed, converted to double-stranded cDNA and amplified with PCR. Illumina
sequencing libraries were prepared with the TruSeq small RNA primers
(Illumina). Libraries were sequenced on an Illumina Nextseq 500 with 75-bp
single-end sequencing.

Sequencing reads were aligned to genome build ‘GRCh38.p10’ with bwa
(v0.7.12). Quality control was performed with Aneufinder v1.14 with default
parameters and as described previously. In addition, cells with reads <20,000 and
spikiness >0.25 were excluded. We generate a quasi-bulk copy number by taking an

equal amount of reads from each cell for each sample. Quasi-bulk copy number
profiles were generated from the pooled reads using QDNAseq40. From the quasi-
bulk copy number profiles CNH was inferred. Next, we calculate single-cell CNH
directly from the single-cell karyotypes (absolute copy numbers) of each sample as
follows. We find the minimum consecutive set of segments that comprise the
genome of all single cells of a sample. For each segment, we determine the most
frequent absolute integer copy number in the sample, and define the local
heterogeneity as the fraction of cells that have a value different than the most
frequent value. CNH quantified directly from single cells is then defined as the
average heterogeneity across segments, weighted by segment lengths and correlated
to CNH from quasi-bulk analysis using Spearman’s rank correlation (Fig. 1c).

Validation of CNH with multi-region data. A multi-region copy number dataset
containing 303 samples from 100 patients was obtained from Jamal-Hanjani et al.18.
All 303 samples in this dataset are bulk samples, i.e. consisting of more than one
malignant cell. Hence, CNH can be inferred from the copy number data of each
single sample and averaged over all samples from a patient to arrive at an estimate
of CNH per patient. In addition, we calculate multi-region CNH from copy number
profiles from the different regions of a patient as follows. We find the minimum
consecutive set of segments that comprise the genome of all regions measured from
a patient. For each segment, we determine the most frequent absolute integer
(rounded) copy number in the sample, and define the local heterogeneity as the
fraction of regions that have a (rounded) copy number value different than the most
frequent value. The multi-region CNH is then defined as the average heterogeneity
across segments, weighted by segment lengths. The average CNH of all regions from
a patient was correlated to the multi-region CNH using Spearman’s rank correlation
(Supplementary Fig. 1a).

Comparison of CNH to other ITH measures. We compare CNH to other single-
sample ITH measures on TCGA data. We obtain ITH according to PyClone (n=
1095 primary cancers) and EXPANDS (n= 1152 primary cancers) from Andor
et al.9 and ITH according to ABSOLUTE applied to copy number and mutation
data (n= 9399 primary cancers) from Thorsson et al.38. These three methods use
both copy number and mutation data to infer ITH. We calculate S-score19 from the
copy number data of 10,379 primary cancers and MATH11 from the mutation data
of 9290 primary cancers. In addition, we calculate ITH using ABSOLUTE applied
to copy number data only for SARC, LAML, UCEC and LGG (1255 primary
cancers). For each of these measures, and CNH, we calculate the concordance-
index for predicting OS using the ‘survival’ R package (v3.2.7) and the ‘compareC’
R package (v1.3.1). We find that CNH is significantly better in predicting survival
than any of the other methods considered. ABSOLUTE ITH quantifies the fraction
of the genome that is sub-clonal, and is therefore the ITH method conceptually
most similar to CNH. We correlate each of the ITH measures, including CNH, to
ABSOLUTE ITH and find that indeed CNH correlates strongly (and better than
the other methods) to ABSOLUTE ITH. We note that performance of ABSOLUTE
to measure ITH depends on both CNV and mutation data. Indeed, we find a drop
in performance of ABSOLUTE when applied to CNV data only (ABSOLUTE ITH
without mutation data has a C-index= 0.53 when applied to data from SARC,
LAML, UCEC and LGG. ABSOLUTE ITH, including mutation, has a C-index=
0.55 applied to the same data, and C-index= 0.58 when applied to all data in
TCGA). Accurate prediction of ITH by ABSOLUTE hence depends on both CNV
and SNV data (Supplementary Fig. 6).

Statistical analyses and software. The statistical tests used were reported with
each analysis and all tests were two-sided. HapSeg (v1.1.1) and ABSOLUTE
(v1.0.6) were used to analyze SNParray data. BWA (v0.7.12) was used for read
alignment of single-cell data and R-package Aneufinder (v1.14) was used to further
analyze single-cell data. Cox proportional-hazard models were constructed with the
‘coxph’ function from the ‘survival’ package (v 3.2.7) and Concordance-indices
were determined and compared using ‘CompareC’ function from the ‘CompareC’
package (v1.3.1)47. R-version used was R-3.6.3. All other analyses were performed
in, and all code was written in MATLAB R2019a.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
TCGA data analyzed in this paper can be downloaded from http://gdac.broadinstitute.
org. The BriTROC-1 data are available on: https://bitbucket.org/britroc/cnsignatures/src/
master/ and raw data can be obtained by contacting James Brenton, corresponding
author of the original publication: James.Brenton@cruk.cam.ac.uk. CAIRO2 data
measured with arrayCGH are publicly available from gene-expression omnibus (GEO),
accession code GSE36864, and shallow–whole-genome sequencing is available from the
European Genome Archive (EGA), accession code EGAS00001002617. Data from
TRACERX used in this study are available from Supplementary Appendix 2 of Jamal-
Hanjani et al.18. Data from ICGC are under restricted access, available from https://dcc.
icgc.org/repositories.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23384-6

10 NATURE COMMUNICATIONS |         (2021) 12:3188 | https://doi.org/10.1038/s41467-021-23384-6 | www.nature.com/naturecommunications

http://www.pantherdb.org/
https://www.genenetwork.nl/
http://gdac.broadinstitute.org
http://gdac.broadinstitute.org
https://bitbucket.org/britroc/cnsignatures/src/master/
https://bitbucket.org/britroc/cnsignatures/src/master/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36864
https://ega-archive.org/studies/EGAS00001002617
https://dcc.icgc.org/repositories
https://dcc.icgc.org/repositories
www.nature.com/naturecommunications


Data generated in this study: single-cell karyotype of CRC samples and SNP data
measured from bulk of the oesophageal and ovarian organoids are available from the
EGA, under accession number EGAS00001004702. Source data are provided with
this paper.

Code availability
MATLAB code to calculate CNH from a segmented copy number profile is available
here: https://github.com/dmmiedema/CNH.
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