269 research outputs found

    Climate Change, Growth, and California Wildfire

    Get PDF
    Large wildfire occurrence and burned area are modeled using hydroclimate and landsurface characteristics under a range of future climate and development scenarios. The range of uncertainty for future wildfire regimes is analyzed over two emissions pathways (the Special Report on Emissions Scenarios [SRES] A2 and B1 scenarios); three global climate models (Centre National de Recherches Météorologiques CM3, Geophysical Fluid Dynamics Laboratory CM21 and National Center for Atmospheric Research PCM2); a mid‐range scenario for future population growth and development footprint; two model specifications related to the uncertainty over the speed and timing with which vegetation characteristics will shift their spatial distributions in response to trends in climate and disturbance; and two thresholds for defining the wildland‐urban interface relative to housing density. Results were assessed for three 30‐year time periods centered on 2020, 2050, and 2085, relative to a 30‐year reference period centered on 1975. Substantial increases in wildfire are anticipated for most scenarios, although the range of outcomes is large and increases with time. The increase in wildfire area burned associated with the higher emissions pathway (SRES A2) is substantial, with increases statewide ranging from 57 percent to 169 percent by 2085, and increases exceeding 100 percent in most of the forest areas of Northern California in every SRES A2 scenario by 2085. The spatial patterns associated with increased fire occurrence vary according to the speed with which the distribution of vegetation types shifts on the landscape in response to climate and disturbance, with greater increases in fire area burned tending to occur in coastal southern California, the Monterey Bay area and northern California Coast ranges in scenarios where vegetation types shift more rapidly.National Oceanic and Atmospheric Administration (NOAA) Regional Integrated Science and Assessment Program for California, United StatesCalifornia Climate Change Center/[CEC-500-2009-046-F]//Estados UnidosUnited States Department of Agriculture (USDA) Forest Service Pacific Southwest Research Station///Estados UnidosNational Oceanic and Atmospheric Administration (NOAA) Regional Integrated Science and Assessment Program for California///Estados UnidosUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones Geofísicas (CIGEFI

    Differences in avoidable mortality between migrants and the native Dutch in the Netherlands

    Get PDF
    BACKGROUND: The quality of the healthcare system and its role in influencing mortality of migrant groups can be explored by examining ethnic variations in 'avoidable' mortality. This study investigates the association between the level of mortality from 'avoidable' causes and ethnic origin in the Netherlands and identifies social factors that contribute to this association. METHODS: Data were obtained from cause of death and population registries in the period 1995–2000. We compared mortality rates for selected 'avoidable' conditions for Turkish, Moroccan, Surinamese and Antillean/Aruban groups to native Dutch. RESULTS: We found slightly elevated risk in total 'avoidable' mortality for migrant populations (RR = 1.13). Higher risks of death among migrants were observed from almost all infectious diseases (most RR > 3.00) and several chronic conditions including asthma, diabetes and cerebro-vascular disorders (most RR > 1.70). Migrant women experienced a higher risk of death from maternity-related conditions (RR = 3.37). Surinamese and Antillean/Aruban population had a higher mortality risk (RR = 1.65 and 1.31 respectively), while Turkish and Moroccans experienced a lower risk of death (RR = 0.93 and 0.77 respectively) from all 'avoidable' conditions compared to native Dutch. Control for demographic and socioeconomic factors explained a substantial part of ethnic differences in 'avoidable' mortality. CONCLUSION: Compared to the native Dutch population, total 'avoidable' mortality was slightly elevated for all migrants combined. Mortality risks varied greatly by cause of death and ethnic origin. The substantial differences in mortality for a few 'avoidable' conditions suggest opportunities for quality improvement within specific areas of the healthcare system targeted to disadvantaged groups

    Pain in the lumbar, thoracic or cervical regions: do age and gender matter? A population-based study of 34,902 Danish twins 20–71 years of age

    Get PDF
    Background. It is unclear to what extent spinal pain varies between genders and in relation to age. It was the purpose of this study to describe the self-reported prevalence of 1) pain ever and pain in the past year in each of the three spinal regions, 2) the duration of such pain over the past year, 3) pain radiating from these areas, and 4) pain in one, two or three areas. In addition, 5) to investigate if spinal pain reporting is affected by gender and 6) to see if it increases gradually with increasing age. Method. A cross-sectional survey was conducted in 2002 on 34,902 twin individuals, aged 20 to 71 years, representative of the general Danish population. Identical questions on pain were asked for the lumbar, thoracic and cervical regions. Results. Low back pain was most common, followed by neck pain with thoracic pain being least common. Pain for at least 30 days in the past year was reported by 12%, 10%, and 4%, respectively. The one-yr prevalence estimates of radiating pain were 22% (leg), 16% (arm), and 5% (chest). Pain in one area only last year was reported by 20%, followed by two (13%) and three areas (8%). Women were always more likely to report pain and they were also more likely to have had pain for longer periods. Lumbar and cervical pain peaked somewhat around the middle years but the curves were flatter for thoracic pain. Similar patterns were noted for radiating pain. Older people did not have pain in a larger number of areas but their pain lasted longer. Conclusion. Pain reported for and from the lumbar and cervical spines was found to be relatively common whereas pain in the thoracic spine and pain radiating into the chest was much less common. Women were, generally, more likely to report pain than men. The prevalence estimates changed surprisingly little over age and were certainly not more common in the oldest groups, although the pain was reported as more long-lasting in the older group

    Cause-specific mortality time series analysis: a general method to detect and correct for abrupt data production changes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monitoring the time course of mortality by cause is a key public health issue. However, several mortality data production changes may affect cause-specific time trends, thus altering the interpretation. This paper proposes a statistical method that detects abrupt changes ("jumps") and estimates correction factors that may be used for further analysis.</p> <p>Methods</p> <p>The method was applied to a subset of the AMIEHS (Avoidable Mortality in the European Union, toward better Indicators for the Effectiveness of Health Systems) project mortality database and considered for six European countries and 13 selected causes of deaths. For each country and cause of death, an automated jump detection method called Polydect was applied to the log mortality rate time series. The plausibility of a data production change associated with each detected jump was evaluated through literature search or feedback obtained from the national data producers.</p> <p>For each plausible jump position, the statistical significance of the between-age and between-gender jump amplitude heterogeneity was evaluated by means of a generalized additive regression model, and correction factors were deduced from the results.</p> <p>Results</p> <p>Forty-nine jumps were detected by the Polydect method from 1970 to 2005. Most of the detected jumps were found to be plausible. The age- and gender-specific amplitudes of the jumps were estimated when they were statistically heterogeneous, and they showed greater by-age heterogeneity than by-gender heterogeneity.</p> <p>Conclusion</p> <p>The method presented in this paper was successfully applied to a large set of causes of death and countries. The method appears to be an alternative to bridge coding methods when the latter are not systematically implemented because they are time- and resource-consuming.</p

    Pervasive Growth Reduction in Norway Spruce Forests following Wind Disturbance

    Get PDF
    Background: In recent decades the frequency and severity of natural disturbances by e.g., strong winds and insect outbreaks has increased considerably in many forest ecosystems around the world. Future climate change is expected to further intensify disturbance regimes, which makes addressing disturbances in ecosystem management a top priority. As a prerequisite a broader understanding of disturbance impacts and ecosystem responses is needed. With regard to the effects of strong winds – the most detrimental disturbance agent in Europe – monitoring and management has focused on structural damage, i.e., tree mortality from uprooting and stem breakage. Effects on the functioning of trees surviving the storm (e.g., their productivity and allocation) have been rarely accounted for to date. Methodology/Principal Findings: Here we show that growth reduction was significant and pervasive in a 6.79?million hectare forest landscape in southern Sweden following the storm Gudrun (January 2005). Wind-related growth reduction in Norway spruce (Picea abies (L.) Karst.) forests surviving the storm exceeded 10 % in the worst hit regions, and was closely related to maximum gust wind speed (R 2 = 0.849) and structural wind damage (R 2 = 0.782). At the landscape scale, windrelated growth reduction amounted to 3.0 million m 3 in the three years following Gudrun. It thus exceeds secondary damage from bark beetles after Gudrun as well as the long-term average storm damage from uprooting and stem breakage in Sweden

    Avoidable mortality across Canada from 1975 to 1999

    Get PDF
    BACKGROUND: The concept of 'avoidable' mortality (AM) has been proposed as a performance measure of health care systems. In this study we examined mortality in five geographic regions of Canada from 1975 to 1999 for previously defined avoidable disease groups that are amenable to medical care and public health. These trends were compared to mortality from other causes. METHODS: National and regional age-standardized mortality rates for ages less than 65 years were estimated for avoidable and other causes of death for consecutive periods (1975–1979, 1980–1985, 1985–1989, 1990–1994, and 1995–1999). The proportion of all-cause mortality attributable to avoidable causes was also determined. RESULTS: From 1975–1979 to 1995–1999, the AM decrease (46.9%) was more pronounced compared to mortality from other causes (24.9%). There were persistent regional AM differences, with consistently lower AM in Ontario and British Columbia compared to the Atlantic, Quebec, and Prairies regions. This trend was not apparent when mortality from other causes was examined. Injuries, ischaemic heart disease, and lung cancer strongly influenced the overall AM trends. CONCLUSION: The regional differences in mortality for ages less than 65 years was attributable to causes of death amenable to medical care and public health, especially from causes responsive to public health

    The Effects of Wildfire on Mortality and Resources for an Arboreal Marsupial: Resilience to Fire Events but Susceptibility to Fire Regime Change

    Get PDF
    BACKGROUND: Big environmental disturbances have big ecological effects, yet these are not always what we might expect. Understanding the proximate effects of major disturbances, such as severe wildfires, on individuals, populations and habitats will be essential for understanding how predicted future increases in the frequency of such disturbances will affect ecosystems. However, researchers rarely have access to data from immediately before and after such events. Here we report on the effects of a severe and extensive forest wildfire on mortality, reproductive output and availability of key shelter resources for an arboreal marsupial. We also investigated the behavioural response of individuals to changed shelter resource availability in the post-fire environment. METHODOLOGY/PRINCIPAL FINDINGS: We fitted proximity-logging radiotransmitters to mountain brushtail possums (Trichosurus cunninghami) before, during and after the 2009 wildfires in Victoria, Australia. Surprisingly, we detected no mortality associated with the fire, and despite a significant post-fire decrease in the proportion of females carrying pouch young in the burnt area, there was no short-term post-fire population decline. The major consequence of this fire for mountain brushtail possums was the loss of over 80% of hollow-bearing trees. The types of trees preferred as shelter sites (highly decayed dead standing trees) were those most likely to collapse after fire. Individuals adapted to resource decline by being more flexible in resource selection after the fire, but not by increased resource sharing. CONCLUSIONS/SIGNIFICANCE: Despite short-term demographic resilience and behavioural adaptation following this fire, the major loss of decayed hollow trees suggests the increased frequency of stand-replacing wildfires predicted under climate change will pose major challenges for shelter resource availability for hollow-dependent fauna. Hollow-bearing trees are typically biological legacies of previous forest generations in post-fire regrowth forests but will cease to be recruited to future regrowth forests if the interval between severe fires becomes too rapid for hollow formation

    Climate Change and the Future of California's Endemic Flora

    Get PDF
    The flora of California, a global biodiversity hotspot, includes 2387 endemic plant taxa. With anticipated climate change, we project that up to 66% will experience >80% reductions in range size within a century. These results are comparable with other studies of fewer species or just samples of a region's endemics. Projected reductions depend on the magnitude of future emissions and on the ability of species to disperse from their current locations. California's varied terrain could cause species to move in very different directions, breaking up present-day floras. However, our projections also identify regions where species undergoing severe range reductions may persist. Protecting these potential future refugia and facilitating species dispersal will be essential to maintain biodiversity in the face of climate change
    corecore