721 research outputs found

    Quantifying the importance of functional traits for primary production in aquatic plant communities

    Get PDF
    1. Aquatic plant meadows are important coastal habitats that sustain many ecosystem functions such as primary production and carbon sequestration. Currently, there is a knowledge gap in understanding which plant functional traits, for example, leaf size or plant height underlie primary production in aquatic plant communities. 2. To study how plant traits are related to primary production, we conducted a field survey in the Baltic Sea, Finland, which is characterized by high plant species and functional diversity. Thirty sites along an exposure gradient were sampled (150 plots), and nine plant morphological and chemical traits measured. The aim was to discern how community-weighted mean traits affect community production and whether this relationship changes along an environmental gradient using structural equation modelling (SEM). 3. Plant height had a direct positive effect on production along an exposure gradient (r = 0.33) and indirect effects through two leaf chemical traits, leaf δ15N and leaf δ13C (r = 0.24 and 0.18, respectively) resulting in a total effect of 0.28. In plant communities experiencing varying exposure, traits such as root N concentration and leaf δ15N had positive and negative effects on production, respectively. 4. Synthesis. Our results demonstrate that the relationship between aquatic plant functional traits and community production is variable and changes over environmental gradients. Plant height generally has a positive effect on community production along an exposure gradient, while the link between other traits and production changes in plant communities experiencing varying degrees of exposure. Thus, the underlying biological mechanisms influencing production differ in plant communities, emphasizing the need to resolve variability and its drivers in real-world communities. Importantly, functionally diverse plant communities sustain ecosystem functioning differently andPeer reviewe

    Observations of Persistent Leonid Meteor Trails 2. Photometry and Numerical Modeling

    Get PDF
    During the 1998 Leonid meteor shower, multi-instrument observations of persistent meteor trains were made from the Starfire Optical Range on Kirtland Air Force Base, New Mexico, and from a secondary site in nearby Placitas, New Mexico. The University of Illinois Na resonance lidar measured the Na density and temperature in the trains, while various cameras captured images and videos of the trains, some of which were observed to persist for more than 30 min. The Na density measurements allow the contribution of Na airglow to the observed train luminescence to be quantified for the first time. To do this, persistent train luminescence is numerically modeled. Cylindrical symmetry is assumed and observed values of the Na density, temperature, and diffusivity are used. It is found that the expected Na luminosity is consistent with narrow band CCD all-sky camera observations, but that these emissions can contribute only a small fraction of the total light observed in a 0.5-1 µbandwidth. Other potential luminosity sources are examined in particular light resulting from the possible excitation of monoxide of meteoric metals (particular FeO) and O2(b¹ ) during reactions between atmospheric oxygen species and meteoric metals. If is found that the total luminosity of these combined processes falls somewhat short of explaining the observed brightness, and thus additional luminosity sources still are needed. In addition, the brightness distribution, the so-called hollow cylinder effect, remains unexplained

    Sampling and Analysis of Impact Crater Residues Found on the Wide Field Planetary Camera-2 Radiator

    Get PDF
    After nearly 16 years in low Earth orbit (LEO), the Wide Field Planetary Camera-2 (WFPC2) was recovered from the Hubble Space Telescope (HST) in May 2009, during the 12 day shuttle mission designated STS-125. The WFPC-2 radiator had been struck by approximately 700 impactors producing crater features 300 microns and larger in size. Following optical inspection in 2009, agreement was reached for joint NASA-ESA study of crater residues, in 2011. Over 480 impact features were extracted at NASA Johnson Space Center's (JSC) Space Exposed Hardware clean-room and curation facility during 2012, and were shared between NASA and ESA. We describe analyses conducted using scanning electron microscopy (SEM) - energy dispersive X-ray spectrometry (EDX): by NASA at JSC's Astromaterials Research and Exploration Science (ARES) Division; and for ESA at the Natural History Museum (NHM), with Ion beam analysis (IBA) using a scanned proton microbeam at the University of Surrey Ion Beam Centre (IBC)

    Disturbance and stress - different meanings in ecological dynamics?

    Get PDF
    There is an increasing frequency of papers addressing disturbance and stress in ecology without clear delimitation of their meaning. Some authors use the terms disturbance and stress exclusively as impacts, while others use them for the entire process, including both causes and effects. In some studies, the disturbance is considered as a result of a temporary impact, which is positive for the ecosystem, while stress is a negative, debilitating impact. By developing and testing simple theoretical models, the authors propose to differentiate disturbance and stress by frequency. If the frequency of the event enables the variable to reach a dynamic equilibrium which might be exhibited without this event, then the event (plus its responses) is a disturbance for the system. If frequency prevents the variable’s return to similar pre-event dynamics and drives or shifts it to a new trajectory, then we are facing stress. The authors propose that changes triggered by the given stimuli can be evaluated on an absolute scale, therefore, direction of change of the variable must not be used to choose one term or the other, i.e. to choose between stress and disturbance

    The species diversity Ã— fire severity relationship is hump-shaped in semiarid yellow pine and mixed conifer forests

    Get PDF
    The combination of direct human influences and the effects of climate change are resulting in altered ecological disturbance regimes, and this is especially the case for wildfires. Many regions that historically experienced low–moderate severity fire regimes are seeing increased area burned at high severity as a result of interactions between high fuel loads and climate warming with a number of negative ecological effects. While ecosystem impacts of altered fire regimes have been examined in the literature, little is known of the effects of changing fire regimes on forest understory plant diversity even though understory taxa comprise the vast majority of forest plant species and play vital roles in overall ecosystem function. We examined understory plant diversity across gradients of wildfire severity in eight large wildfires in yellow pine and mixed conifer temperate forests of the Sierra Nevada, California, USA. We found a generally unimodal hump-shaped relationship between local (alpha) plant diversity and fire severity. High-severity burning resulted in lower local diversity as well as some homogenization of the flora at the regional scale. Fire severity class, post-fire litter cover, and annual precipitation were the best predictors of understory species diversity. Our research suggests that increases in fire severity in systems historically characterized by low and moderate severity fire may lead to plant diversity losses. These findings indicate that global patterns of increasing fire size and severity may have important implications for biodiversity

    Species trait shifts in vegetation and soil seed bank during fen degradation

    Get PDF
    Fens in Central Europe are characterised by waterlogged organic substrate and low productivity. Human-induced changes due to drainage and mowing lead to changes in plant species composition from natural fen communities to fen meadows and later to over-drained, degraded meadows. Moderate drainage leads to increased vegetation productivity, and severe drainage results in frequent soil disturbances and less plant growth. In the present article, we analyse changes in plant trait combinations in the vegetation and the soil seed bank as well as changes in the seed bank types along gradient of drainage intensity. We hypothesize that an increase in productivity enhances traits related to persistence and that frequent disturbance selects for regeneration traits. We use multivariate statistics to analyse data from three disturbance levels: undisturbed fen, slightly drained fen meadow and severely drained degraded meadow. We found that the abundance of plants regenerating from seeds and accumulating persistent seed banks was increasing with degradation level, while plants reproducing vegetatively were gradually eliminated along the same trajectory. Plants with strong resprouting abilities increased during degradation. We also found that shifts in trait combinations were similar in the aboveground vegetation and in soil seed banks. We found that the density of short-term persistent seeds in the soil is highest in fen meadows and the density of long-term persistent seeds is highest in degraded meadows. The increase in abundance of species with strong regeneration traits at the cost of species with persistence-related traits has negative consequences for the restoration prospects of severely degraded sites

    Monte Carlo Simulations of HIV Capsid Protein Homodimer

    Get PDF
    Capsid protein (CA) is the building block of virus coats. To help understand how the HIV CA proteins self-organize into large assemblies of various shapes, we aim to computationally evaluate the binding affinity and interfaces in a CA homodimer. We model the N- and C-terminal domains (NTD and CTD) of the CA as rigid bodies and treat the five-residue loop between the two domains as a flexible linker. We adopt a transferrable residue-level coarse-grained energy function to describe the interactions between the protein domains. In seven extensive Monte Carlo simulations with different volumes, a large number of binding/unbinding transitions between the two CA proteins are observed, thus allowing a reliable estimation of the equilibrium probabilities for the dimeric vs monomeric forms. The obtained dissociation constant for the CA homodimer from our simulations, 20–25 μM, is in reasonable agreement with experimental measurement. A wide range of binding interfaces, primarily between the NTDs, are identified in the simulations. Although some observed bound structures here closely resemble the major binding interfaces in the capsid assembly, they are statistically insignificant in our simulation trajectories. Our results suggest that although the general purpose energy functions adopted here could reasonably reproduce the overall binding affinity for the CA homodimer, further adjustment would be needed to accurately represent the relative strength of individual binding interfaces
    • …
    corecore