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ABSTRACT 

After nearly 16 years in low Earth orbit (LEO), the 
Wide Field Planetary Camera-2 (WFPC2) was 
recovered from the Hubble Space Telescope (HST) in 
May 2009, during the 12 day shuttle mission designated 
STS-125. The WFPC-2 radiator had been struck by 
approximately 700 impactors producing crater features 
300 m and larger in size.  Following optical inspection 
in 2009, agreement was reached for joint NASA-ESA 
study of crater residues, in 2011. Over 480 impact 
features were extracted at NASA Johnson Space 
Center’s (JSC) Space Exposed Hardware clean-room 
and curation facility during 2012, and were shared 
between NASA and ESA.  We describe analyses 
conducted using scanning electron microscopy (SEM) - 
energy dispersive X-ray spectrometry (EDX): by 
NASA at JSC’s Astromaterials Research and 
Exploration Science (ARES) Division; and for ESA at 
the Natural History Museum (NHM), with Ion beam 
analysis (IBA) using a scanned proton microbeam at 
the University of Surrey Ion Beam Centre (IBC).  

 

1        INTRODUCTION 

1.1 The importance of the WFPC2 radiator 

The HST was deployed during the STS-31 mission in 
April 1990. Its initial orbit was 610 km by 618 km, 
with an inclination of 28.5º. Due to problems in the 
optical system, the original Wide Field Planetary 
Camera (WFPC) was replaced by WFPC2 in December 
1993. This new camera was the "workhorse" instrument 
behind nearly all of the most famous HST celestial 
images released in the last decade. After more than 15 
years of collecting invaluable data for astronomers 
around the world, WFPC2 was replaced by Wide Field 
Camera 3 (WFC3) during the final HST Servicing 
Mission 4 in May 2009. The entire WFPC2 instrument 
package was retrieved by the Atlantis astronauts and 
brought back to NASA.  

The radiator attached to the WFPC2 camera was 
exposed to space for 15.5 years. Its dimensions are 0.8 
m × 2.2 m; the outermost layer is a curved aluminum 
plate with a thickness of 4.06 mm. 

 

Figure 1. The WFPC2 being installed aboard HST 
during 1993’s Servicing Mission (SM1). 

The surface of the plate is covered with YB-71 white 
paint (Zinc Orthotitanate coating, or ZOT, a type of 
ceramic thermal control paint). The thickness of the 
paint varies across the surface, and is approximately 
between 100 and 200 µm. Due to its large surface area 
and long exposure time, the radiator surface served as a 
unique witness plate for the micrometeoroid (MM) and 
orbital debris (OD) impacts at the HST altitude between 
1993 and 2009. Because of high impact speed in space, 
200 µm and larger MM or OD particles could be a 
safety concern for human spaceflight and robotic 
missions in low Earth orbit (LEO, the region below 
2000 km altitude). Since ground-based telescopes and 
radars are limited to the detection of particles several 
millimeters and larger in space, the WFPC2 impact data 
are key to provide information on the millimeter and 
smaller MM and OD populations in LEO. 

 

1.2 Optical inspections 

After STS-31, the surface of WFPC was examined for 
impact features, although little analytical work to 
determine impactor origins as MM or OD was 
performed [1]. The post-flight optical examination of 
the WFPC2 radiator took place over six weeks during 
the summer of 2009 in the NASA GSFC “White 
House” Class 100k clean room.  This examination 
recorded details about all micrometeoroid and orbital 
debris (MMOD) impact features with diameters of 300 
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μm or larger.  Using a laser pattern projector and digital 
microscope, team members from two NASA centers 
recorded the positions, diameters, and depths of each of 
677 craters.  The digital microscope allowed the team 
to record crater images and image properties, then 
extract the actual measurements later in an office 
environment.   Results of the optical survey have 
already been presented [2] and published as a NASA 
Technical Publication [3]. A significant finding is that 
74% of the craters did not penetrate the layer of white 
paint on the outside of the radiator panel.  During the 
2009 optical inspection of the radiator, some features 
thought to be interesting but of non-impact origin were 
also recorded, usually with fewer than three images and 
no depth information.  The survey did not record all 
non-impact features, but only unique items or examples 
representative of a class.  About 54% of the recorded 
features were found to be surface contamination.  Non-
crater paint damage (e.g., divots, scratches and dents) 
and apparent paint defects each made up about 8% of 
the non-impact features.  Of the surface contaminants, 
60% were objects on the surface and 40% were spots, 
stains, and smudges.  About 30% of the total number 
were found to be sub-threshold (i.e., <300 μm) craters 
and apparent (though unusual in appearance) craters.   

 

1.3 Radiator custody & handling 

In November 2009, the WFPC2 was shipped to the 
Smithsonian National Air & Space Museum for 
display; it was also displayed at NASA Jet Propulsion 
Laboratory and the Denver Museum of Nature and 
Science before returning to storage in November 2010.  
During this time, the WFPC2 was enclosed by a 
transparent cover over the WFC3 shipping container 
base.  The container was not purged and was not 
airtight.  The radiator was de-integrated from the 
camera assembly in September 2011 in GSFC’s Laurel 
(Maryland) warehouse and bagged in Llumalloy sheets 
for shipment to JSC in December 2011.  During 
bagging, the radiator was exposed to the ambient 
warehouse environment.  After its arrival at JSC, the 
radiator assembly was inserted into the Space Exposed 
Hardware (SEH) Class 10k cleanroom for coring. 

 

2        THE JOINT ESA-NASA EFFORT 

The Hubble Space Telescope Project has been operated 
as an ESA/NASA partnership since its inception in the 
mid-1980s.  It is considered one of NASA’s most 
successful international partnerships, forging a 
consolidated team of dedicated scientists and engineers 
to develop the Observatory and execute six extremely 
complicated and successful space shuttle missions.  
This relationship is ever evolving as ESA and NASA 
scientists continue to expand our knowledge of the 

Universe.   

The most recent collaboration has been focused on 
studying the WFPC2.  The WFPC2 science instrument 
was removed from the HST Observatory in 2009 during 
the fifth and final HST Servicing Mission, designated 
HST SM-4.  This instrument was installed during the 
first servicing mission, HST SM-1, in 1993.  With its 
long duration on orbit life time, NASA was interested 
in the space environment effects on the optics as well as 
the micro-meteorite impacts on the external radiator.  
Initial steps to preserve the artifacts were taken soon 
after the Space Shuttle, Endeavour, was returned to 
NASA Kennedy Space Center.  

Subsequent investigations were proposed whose 
methodology would take advantage of scientific 
techniques employed in previous HST Solar Array 
impact studies performed by ESA.  NASA approached 
ESA to consider performing impact analyses on the 
WFPC2 radiator impact sites.  ESA agreed and the 
international team developed a joint ESA/NASA 
investigation plan where impact samples would be 
studied both in Europe and in the United States.  This 
report summarizes the initial results of that 
investigation. 

Detailed discussion of our joint findings remains 
premature at this point. Here we explain the methods 
adopted for sample preparation, handling, analysis and 
interpretation. In particular we describe development of 
a core sampling technique; the practical taxonomy 
developed to classify residues as belonging either to 
anthropogenic orbital debris or micrometeoroids of 
natural origin; and the protocols for examination of 
crater residues.  Challenges addressed in sample 
extraction were the relative thickness of the surface to 
be cut, protection of the impact feature from 
contamination while coring, and the need to preserve 
the cleanroom environment so as to preclude or 
minimize cross-contamination.  We summarise 
impactor classification criteria, including the 
recognition and assessment of surface contamination, 
and the necessity for surface cleaning.   

In this paper, we discuss analytical techniques used to 
examine the crater residues: EDX from either electron 
excitation (SEM-EDX) and, for cores assessed as 
“difficult” targets, proton excitation (IBA).  All 
samples were documented by electron imagery:  
backscattered electron imagery in the SEM, and where 
appropriate, secondary electron imagery during IBA. 

 

3        SAMPLING THE RADIATOR SURFACE 

3.1 Coring Techniques 

Collecting samples from the thick surface using a core 
drill presented itself as the technique offering greatest 
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probability of success, within two major constraints:  
not contaminating the sample during collection, and not 
compromising the integrity of the cleanroom in which 
sampling would be conducted.  A novel, unique 
sampling tool was developed to perform cleanroom 
coring of the WFPC2 impact features.  This annular 
cutter is shown in Figure 2, along with its products.   

 

Figure 2. (left) the coring device developed at JSC. 
(right) Exemplar cores taken with the small and large 

cutters. The small core is a reference standard. 

In this case, a standard 5/8 inch (~ 16 mm) outer 
diameter tool steel cutting tool was modified with a 
concentric, spring-loaded, phosphor-bronze cylinder.  
The cylinder is tipped with a standard Viton O-ring to 
protect the feature being cored.  As the core drill is 
brought into contact with the radiator’s surface, friction 
between the surface and the O-ring brings the cylinder 
to rest within the rotating annular cutter.  As the cutter 
is advanced into the surface the cylinder retracts into 
the hollow core of the cutting tool, allowing the 
radiator’s Aluminum substrate to be cut while 
protecting the feature of interest. The O-ring was 
changed regularly to minimize contamination or cross-
contamination of the surface.  A larger 1-1/16th inch (~ 
27 mm) diameter cutting tool was similarly modified, 
to allow larger craters or those displaying areas of paint 
spallation to be collected. 

The core drill motor was mounted on a four degree of 
freedom assembly derived from commercial machine 
shop components and was capable of vertical, lateral, 
plunging, and rotational motion.  The latter was 
required by the curved surface of the radiator, and care 
was taken to enter the radiator at normal incidence.  
The feature to be cored was identified by eye and the 
core drill was coarsely aligned using the fixture. Fine 
alignment was provided by a commercial laser 
projection system, and the fixture adjusted accordingly 
to place a laser “X” over the target feature. 

A commercial drill dust catcher was modified with a 
custom, 3D printed ceramic base; the base touched the 
surface of the radiator only with a Viton O-ring.  
Together these formed a vacuum shroud; the shroud is 
ducted to a High Efficiency Particulate Air (HEPA)-
filtered cleanroom vacuum. Dust generated by cutting 
is collected by the vacuum while larger strands of 
Aluminum and ZOT chips are collected by the shroud 
assembly itself.  

The technique proved highly successful, producing 
samples which could be handled safely and without 
significant detachment of the thin paint layer.  

 

3.2 Inventory of cores 

A total of 486 large and small cores were collected.  
After inspection by coring team members, each was 
assigned a sequential serial number, marked on  base or 
lateral surface area.  The cores were then placed in an 
Al-6061 rack for storage and shipment.  The rack holds 
the cores firmly within Teflon O-rings, thereby 
protecting and isolating each impacted surface.  
Random selection was used to ensure both the NASA 
JSC and ESA teams received features of all sizes and 
locations from the radiator’s surface. 

 

3.3 Surface contamination 

Radiator surface contamination had been noted prior to 
our 2009 optical survey. Some cores indeed proved 
merely to sample surface contaminants rather than 
impact features. After preliminary identification, these 
were not analysed further.  Between coring sessions the 
radiator was draped in its Llumalloy shipping bag to 
minimize particulate fall onto the surface. Use of O-
ring seals (with repeated renewal), and the HEPA 
vacuum shroud minimized contamination of the surface 
and impact features.  However, the Viton O-rings did 
leave some F-bearing polymeric materials on the core 
surface over their contact area. The vacuum shroud was 
not entirely successful in protecting features below that 
being cored from the fall of Al/paint dust, but loose 
contamination was easily removed. Surface particulates 
found around impact features, but not in their impact 
melts, also included the elements: Ag, Bi, Sn, Cd, Er, 
Ce, FeCrNi, PbCuZn, W, FeWVCr (coring tool), MgP, 
MgCrPNa, BaSO, CaP, Ni, MoFe, and AgS. 

Many samples revealed the presence of a K-rich 
material at the surface, also containing oxygen and 
carbon. Laser Raman spectroscopy showed this to be 
KHCO3 (potassium hydrocarbonate). It was sometimes 
present as large surface patches, or as needles that are 
very sensitive to damage during exposure to an electron 
beam and move during examination, contributing to 
charging issues that complicate imaging.  KHCO3 fills 
large portions of some craters, clearly being formed 
post-impact, and hindered observation and X-ray data 
collection.  The phase is very soluble, and some craters 
were treated with distilled water, in order to remove 
this material, which we consider to be an ageing 
product of the paint binder composition. 
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4        IMPACTOR CLASSIFICATION 

Our aim was to find diagnostic impact residue 
compositions and use them to recognize particle 
origins. Analytical data from the impact feature would 
reveal those elements which were either not expected in 
the radiator (i.e. undoubtedly of extraneous origin), or 
were detected at anomalous levels. Such an approach 
must take into account the specific localised substrate 
for each individual impact, and it was critical to have a 
detailed understanding of the structure and composition 
of all components in the radiator before attempting to 
classify impactor type and origin. This was an early 
objective of our work, as explained in 5.3 below. 

Some elemental combinations give rapid and 
unambiguous recognition of impactor. E.g. co-location 
of Mg, Si, Fe and O in an impact feature on a substrate 
which does not contain these elements is a reliable 
indication of mafic silicate impact [4], the most 
abundant type of MM [5]. Unfortunately, the WFPC2 
composition precludes recognition of some impactors, 
as their residues cannot be distinguished from 
components already present in the radiator. 

i) MM –  the silicate, sulfide, oxide and carbonate 
minerals, amorphous mafic silicate glass and variable 
amounts of organic material are distinctive [6] and do 
not resemble artificial materials employed in orbital 
operations. There are no reported aerospace 
applications of iron sulfides, magnesium silicates or 
phyllosilicates, which make up the bulk of MM. 
Meteoritic Fe metals have relatively high Ni [5], with 
low Cr and Mn levels, easy to distinguish from ferrous 
alloys. Residues containing a substantial proportion of 
MM materials might therefore be relatively easy to tell 
apart from the WFPC2 components. 

ii) OD – although a wide range of materials are 
employed in aerospace applications, previous studies 
[e.g. 6] have shown that several dominate: Al alloys, 
usually with Mg and Cu, and containing µm-scale 
inclusions of Mg, Si, Fe, Cr, Mn  (and occasionally Ni); 
ferrous alloys containing either Cr or both Cr and Ni 
(‘stainless steels’); specialised alloys; paint particles 
containing organic or silicate binder and Zn or Ti oxide 
pigments; Al or Al oxide from solid rocket motor 
operations; and alkali metal Na/K droplets. 
Unfortunately, Al, Zn and Ti (which are likely to be 
among the most common types of anthropogenic OD) 
cannot be reliably assigned as impacting elements on 
WFPC2 because of their abundance in the radiator 
materials. More exotic reported OD compositions have 
included solders and electronic components, and 
polymeric materials released from disruption of 
orbiting craft. Although Al oxides are found as very 
rare grains in meteoritic materials [5], none of the other 
OD would be easily confused with MM.  

To standardise the process of impactor attribution, we 

used discriminatory flow diagrams (e.g. Fig. 3) to 
sequentially exclude different types of material. 

 

Figure 3. Example: Mg-rich residue classification 

 

5        EXAMINATION OF THE SAMPLES 

5.1 Analytical Methods 

Scanning Electron Microscopy and Energy Dispersive 
X-ray Microanalysis (SEM-EDX) were used at JSC and 
NHM. These techniques are long established in analysis 
of hypervelocity impact residues [e.g. 8-13], and recent 
instrument developments allow rapid acquisition of 
elemental data from carefully chosen areas of the 
impact features, especially where melt textures were 
found (Fig. 4). The reliability of impactor 
determination by SEM-EDX of residue has been 
verified by experimental analogue studies [e.g. 14]. In 
this study, stereo imagery and construction of digital 
elevation models were used to measure impact feature 
depth and volume (Fig. 4). Automated X-ray mapping 
was also used to locate widely spaced patches of 
extraneous composition and surface contaminant 
grains. Most impact features yielded diagnostic 
information in EDX spectra (e.g. Fig. 5), but in cases 
where the radiator materials appeared to dominate the 
melt composition, more sensitive ion beam analysis 
techniques were also used. Particle Induced X-ray 
Emission (PIXE) was performed using the Tandetron 
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