156 research outputs found

    Optimizing both catalyst preparation and catalytic behaviour for the oxidative dehydrogenation of ethane of Ni-Sn-O catalysts

    Full text link
    [EN] Bulk Ni-Sn-O catalysts have been synthesized, tested in the oxidative dehydrogenation of ethane and characterized by several physicochemical techniques. The catalysts have been prepared by evaporation of the corresponding salts using several additives in the synthesis gel, i.e. ammonium hydroxide, nitric acid, glyoxylic acid or oxalic acid, in the synthesis gel. The catalysts were finally calcined at 500 degrees C in air. Important changes in the catalytic behaviour have been observed depending on the additive. In fact, an important improvement in the catalytic performance is observed especially when some additives, such as glyoxylic or oxalic acid, are used. Thus the productivity to ethylene multiplies by 6 compared to the reference Ni-Sn-O catalyst if appropriate templates are used, and this is the result of an improvement in both the catalytic activity and the selectivity to ethylene. This improved performance has been explained in terms of the decrease of the crystallite size (and the increase in the surface area of catalyst) as well as the modification of the lattice parameter of nickel oxide.The authors would like to acknowledge the DGICYT in Spain (CTQ2015-68951-C3-1-R and CTQ2012-37925-C03-2) for financial support. We also thank the University of Valencia and SCSIE-UV for assistanceSolsona Espriu, BE.; López Nieto, JM.; Agouram, S.; Soriano Rodríguez, MD.; Dejoz, A.; Vázquez, MI.; Concepción Heydorn, P. (2016). Optimizing both catalyst preparation and catalytic behaviour for the oxidative dehydrogenation of ethane of Ni-Sn-O catalysts. Topics in Catalysis. 59(17-18):1564-1572. https://doi.org/10.1007/s11244-016-0674-zS156415725917-18Heracleous E, Lee AF, Wilson K, Lemonidou AA (2005) J Catal 231:159–171Heracleous E, Lemonidou AA (2006) J Catal 237:162–174Savova B, Loridant S, Filkova D, Millet JMM (2010) Appl Catal A 390:148–157Heracleous E, Lemonidou AA (2010) J Catal 270:67–75Solsona B, Nieto JML, Concepcion P, Dejoz A, Ivars F, Vazquez MI (2011) J Catal 280:28–39Skoufa Z, Heracleous E, Lemonidou AA (2012) Catal Today 192:169–176Zhu H, Ould-Chikh S, Anjum DH, Sun M, Biausque G, Basset JM, Caps V (2012) J Catal 285:292–303Skoufa Z, Heracleous E, Lemonidou AA (2012) Chem Eng Sci 84:48–56Zhu H, Rosenfeld DC, Anjum DH, Caps V, Basset JM (2015) ChemSusChem 8:1254–1263Heracleous E, Lemonidou AA (2015) J Catal 322:118–129Solsona B, Concepcion P, Demicol B, Hernandez S, Delgado JJ, Calvino JJ, Nieto JML (2012) J Catal 295:104–114Nieto JML, Solsona B, Grasselli RK, Concepción P (2014) Top Catal 57:1248–1255Popescu I, Skoufa Z, Heracleous E, Lemonidou AA, Marcu IC (2015) PCCP 17:8138–8147Zhang X, Gong Y, Yu G, Xie Y (2002) J Mol Catal A 180:293–298Popescu I, Skoufa Z, Heracleous E, Lemonidou A, Marcu I-C (2015) Phys Chem Chem Phys 17:8138–8147Nakamura KI, Miyake T, Konishi T, Suzuki T (2006) J Mol Catal A 260:144–151Solsona B, Dejoz AM, Vazquez MI, Ivars F, Nieto JML (2009) Top Catal 52:751–757Bortolozzi JP, Gutierrez LB, Ulla MA (2013) Appl Catal A 452:179–188Takeguchi T, Furukawa S, Inoue M (2001) J Catal 202:14–24Richardson JT, Turk B, Twigg MV (1996) Appl Catal 148:97–112Biju V, Khadar MA (2002) J Nanopart Res 4:247–253Van Veenendaal MA, Sawatzky GA (1993) Phys Rev Lett 70:2459–2462Vedrine JC, Hollinger G, Duc TM (1978) J Phys Chem 82:1515–1520Salagre P, Fierro JLG, Medina F, Sueiras JE (1996) J Mol Catal A 106:125–13

    Future axion searches with the International Axion Observatory (IAXO)

    Get PDF
    The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of ga\u3b3 3c few 7 10-12 GeV-1, i.e. 1-1.5 orders of magnitude beyond the one achieved by CAST, currently the most sensitive axion helioscope. The main elements of IAXO are an increased magnetic field volume together with extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested in CAST. Additional physics cases of IAXO could include the detection of electron-coupled axions invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic axion-like particles (ALPs) and other novel excitations at the low-energy frontier of elementary particle physics

    The Next Generation of Axion Helioscopes: The International Axion Observatory (IAXO)

    Get PDF
    The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal to search for solar axions via their Primakoff conversion into photons of 1 \u2013 10 keV energies in a strong magnetic field. IAXO will achieve a sensitivity to the axion-photon coupling ga\u3b3 down to a few 710 1212 GeV 121 for a wide range of axion masses up to 3c 0.25 eV. This is an improvement over the currently best (3rd generation) axion helioscope, the CERN Axion Solar Telescope (CAST), of about 5 orders of magnitude in signal strength, corresponding to a factor 3c 20 in the axion photon coupling. IAXO's sensitivity relies on the construction of a large superconducting 8-coil toroidal magnet of 20 m length optimized for axion research. Each of the eight 60 cm diameter magnet bores is equipped with x-ray optics focusing the signal photons into 3c 0.2 cm2 spots that are imaged by very low background x-ray detectors. The magnet will be built into a structure with elevation and azimuth drives that will allow solar tracking for 12 hours each day. This contribution is a summary of our papers [1], [2] and [3] and we refer to these for further details

    The IAXO Helioscope

    Get PDF
    The IAXO (International Axion Experiment) is a fourth generation helioscope with a sensitivity, in terms of detectable signal counts, at least 104 better than CAST phase-I, resulting in sensitivity on ga¿ one order of magnitude better. To achieve this performance IAXO will count on a 8-coil toroidal magnet with 60 cm diameter bores and equipped with X-ray focusing optics into 0.20 cm2 spots coupled to ultra-low background Micromegas X-ray detectors. The magnet will be on a platform that will allow solar tracking for 12 hours per day. The next short term objectives are to prepare a Technical Design Report and to construct the first prototypes of the hardware main ingredients: demonstration coil, X-ray optics and low background detector while refining the physics case and studying the feasibility studies for Dark Matter axions

    Physics potential of the International Axion Observatory (IAXO)

    Get PDF
    We review the physics potential of a next generation search for solar axions:the International Axion Observatory (IAXO). Endowed with a sensitivity todiscover axion-like particles (ALPs) with a coupling to photons as small asgaγ1012g_{a\gamma}\sim 10^{-12} GeV1^{-1}, or to electrons gaeg_{ae}\sim1013^{-13},IAXO has the potential to find the QCD axion in the 1 meV\sim1 eV mass rangewhere it solves the strong CP problem, can account for the cold dark matter ofthe Universe and be responsible for the anomalous cooling observed in a numberof stellar systems. At the same time, IAXO will have enough sensitivity todetect lower mass axions invoked to explain: 1) the origin of the anomalous"transparency" of the Universe to gamma-rays, 2) the observed soft X-ray excessfrom galaxy clusters or 3) some inflationary models. In addition, we reviewstring theory axions with parameters accessible by IAXO and discuss theirpotential role in cosmology as Dark Matter and Dark Radiation as well as theirconnections to the above mentioned conundrums

    Conceptual design of the International Axion Observatory (IAXO)

    Get PDF
    The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma photons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few ×1012\times 10^{-12} GeV1^{-1} and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling gaeg_{ae} with sensitivity -for the first time- to values of gaeg_{ae} not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, which follows the layout of an enhanced axion helioscope, based on a purpose-built 20m-long 8-coils toroidal superconducting magnet. All the eight 60cm-diameter magnet bores are equipped with focusing x-ray optics, able to focus the signal photons into 0.2\sim 0.2 cm2^2 spots that are imaged by ultra-low-background Micromegas x-ray detectors. The magnet is built into a structure with elevation and azimuth drives that will allow for solar tracking for \sim12 h each day.Comment: 47 pages, submitted to JINS

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    corecore