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eIPHT, Centre d’Études de Saclay (CEA-Saclay), Gif-sur-Yvette, France
fInstituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste and Università di Trieste, Trieste, Italy
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Abstract

The International Axion Observatory (IAXO) is a proposed 4th-generation axion helioscope with the primary physics research goal

to search for solar axions via their Primakoff conversion into photons of 1 − 10 keV energies in a strong magnetic field. IAXO

will achieve a sensitivity to the axion-photon coupling gaγ down to a few ×10−12 GeV−1 for a wide range of axion masses up to

∼ 0.25 eV. This is an improvement over the currently best (3rd generation) axion helioscope, the CERN Axion Solar Telescope

(CAST), of about 5 orders of magnitude in signal strength, corresponding to a factor ∼ 20 in the axion photon coupling. IAXO’s

sensitivity relies on the construction of a large superconducting 8-coil toroidal magnet of 20 m length optimized for axion research.

Each of the eight 60 cm diameter magnet bores is equipped with x-ray optics focusing the signal photons into ∼ 0.2 cm2 spots that

are imaged by very low background x-ray detectors. The magnet will be built into a structure with elevation and azimuth drives

that will allow solar tracking for 12 hours each day. This contribution is a summary of our papers [1, 2, 3] and we refer to these for

further details.

Keywords: dark matter, axion, strong CP problem, helioscopes, IAXO, ALP, astroparticle physics

1. Introduction to the International Axion Observatory (IAXO)

1.1. Theory of Axions
The strong CP-problem has been around for more than 35 years [4] and the answer to the question why strong

CP violation in flavor-conserving interactions is not observed experimentally even though theoretically expected is

yet to be found. In 1977, R. Peccei and H. Quinn (PQ) proposed a potential solution [5] to the strong CP-problem.

By introducing an additional global gauge symmetry the apparent conservation of CP in strong interactions can be

explained. Breaking this new symmetry spontaneously at a yet unknown breaking scale fa gives rise to a Nambu-

Goldstone boson, the axion [6, 7]. Furthermore axions -together with Weakly Interacting Massive Particles (WIMPs)-

are favored candidates to solve the Dark Matter (DM) problem. Like WIMPs, axions are especially interesting to

solve the DM mystery since they have not been introduced as an ad hoc solution for this case. Some theories also find

mixed axion-WIMP DM to be a viable option [8]. The axion concept has been generalized to other particles (axion-

like particles, ALPs) which may arise as Nambu-Goldstone bosons from the breaking of other global symmetries.

These particles appear naturally in several extensions of the Standard Modell (SM) of particle physics, such as for

example string theory [9]-[11] and could also account for the DM in the Universe. They have as well been used to

explain certain astrophysical observations [12]-[17].

1.2. Previous and Current Axion Experiments
Axion experiments can be categorized into three (mostly) complementary classes: (1) Haloscopes [18] searching

for relic axions lingering in the galactic halo, (2) Helioscopes [18] looking for axions originating from the solar
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Figure 1. Basic setup of an axion helioscope converting solar axions in a strong laboratory magnetic field of cross-sectional area A and length L

via the inverse Primakoff effect. The putative axion signal is then focused on the detector plane by x-ray optics. Figure taken from Reference [3].

core and (3) laboratory light-shining-through-walls experiments (LSW) [19] searching for axions generated in the

laboratory environment. All three types make use of the axion-photon interaction, an axion property generic to all

axion models. The axion helioscopes stand out as the most mature approach of these technologies and are the one that

promises to be most easily scaled to larger sizes.

Helioscopes focus on axions produced from blackbody photons in the solar core via the Primakoff effect [20] in

the presence of strong electromagnetic fields in the plasma. Since the interaction of these axions with ordinary matter

is extraordinarily weak, they can escape the solar interior, stream undisturbed to Earth and reconvert in the presence of

a strong laboratory transverse magnetic field via the inverse Primakoff effect [18, 21, 22] (see Figure 1). In the specific

case of non-hadronic axions that exhibit a coupling to electrons on tree-level in addition to the generic axion-photon

coupling, further production channels become more important and start competing with or even surpass the Primakoff

contribution. Such processes are mainly the ”BCA processes”: bremsstrahlung, compton and axio-recombination.

The minimum requirements for a powerful helioscope experiment of high sensitivity are a powerful magnet of

large volume and an appropriate x-ray sensor covering the exit of the magnet bore. Ideally, the magnet is equipped

with a mechanical system enabling it to follow the Sun and thus increasing exposure time. Sensitivity can be further

enhanced by the use of x-ray optics that focus the putative signal and therefore reduce detector size and background

levels.

The first axion helioscope search was carried out at Brookhaven National Lab in 1992 with a static dipole magnet

[23]. A second-generation experiment, the Tokyo Axion Helioscope, uses a more powerful magnet and dynamic

tracking of the Sun [24]-[26]. The CERN Axion Solar Telescope (CAST), a helioscope of the third generation and

the most sensitive solar axion search to date, began data collection in 2003. It employs an LHC dipole test magnet of

10 m length and 10 T field strength [27] with an elaborate elevation and azimuth drive to track the Sun. CAST is the

first solar axion search exploiting x-ray optics to improve the signal to background ratio (a factor of 150 in the case of

CAST) [28]. For ma � 0.02 eV, CAST has set an upper limit of gaγ � 8.8 × 10−11 GeV−1 and a slightly larger value

of gaγ for higher axion masses [29]-[33]. CAST has also established the first helioscope limits for non-hadronic axion

models [34].

1.3. IAXO Physics Potential

So far each subsequent generation of axion helioscopes has resulted in an improvement in sensitivity to the axion-

photon coupling constant gaγ of about a factor 6 over its predecessors. To date, all axion helioscopes have used ”recy-

cled” magnets built for other purposes. The IAXO collaboration has recently shown [1] that a further substantial step

beyond the current state-of-the-art represented by CAST is possible with a new fourth-generation axion helioscope,

dubbed the International AXion Observatory (IAXO, see Figure 2). The concept relies on a purpose-built ATLAS-like

magnet capable of tracking the sun for about 12 hours each day, focusing x-ray optics to minimize detector area, and

low background x-ray detectors optimized for operation in the 0.5 − 10 keV energy band.
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Figure 2. Schematic view of the IAXO setup. The magnet, the eight x-ray telescopes and detectors are shown along with the movable tracking

system of the magnet, cryogenics and the power supply system.

The primary physics goal of IAXO is to look for axions and ALPs originating from the Sun via the Primakoff

conversion of the solar plasma photons and to substantially surpass all previous best solar searches. IAXO will be

about 4 − 5 orders of magnitude more sensitive in terms of signal-to-background ratio than CAST, which translates

into a factor of ∼ 20 in terms of the axion-photon coupling constant gaγ and will allow this instrument to reach the few

×10−12 GeV−1 regime for a wide range of axion masses up to about 0.25 eV. IAXO will therefore enter deeply into

completely unexplored ALP and axion parameter space. IAXO will exclude a large region of the unexplored QCD

axion parameter space and the discovery of a new pseudoscalar would be a groundbreaking result for particle physics.

More specifically, at high masses this experiment would explore a broad range of realistic PQ axion models. Its

sensitivity would cover axion models with masses down to the few meV range, superseding the SN 1987A energy loss

limits (ma � 16 meV for hadronic axions). Axion models in this region are of high cosmological interest as favored

dark matter candidates and they could compose all or part of the cold dark matter of the Universe. In non-standard

cosmological scenarios, more generic ALP frameworks [35] or mixed DM scenarios [8], the range of ALP parameters

of interest as DM is enlarged and most of the region at reach for IAXO contains possible dark matter candidates. At

much lower masses, below ∼ 10−7 eV, the region attainable by IAXO includes ALP parameters invoked repeatedly to

explain anomalies in light propagation over astronomical distances [36]-[39]. IAXO would provide a definitive test

of this hypothesis. All above mentionned regions of the axion parameter space that are testable by IAXO are shown

in Figure 3.

Additional physics cases for IAXO include the possibility of detecting more specific models of axions or ALPs

from the Sun. Most remarkable is the possibility to detect the flux of solar axions produced by axion-electron coupling

gae induced phenomena. Although the existence of these production channels for standard axions is model-dependent,

axions with a gae of few ∼ 10−13 have been invoked to solve the anomalous cooling observed in white dwarfs. Similarly

IAXO will be sensitive to models of other proposed particles like hidden photons, or chameleons [41], scalars with

an environment-dependent mass proposed in the context of dark energy models. Although still at an early stage of

theoretical development, the possibility of directly testing the particle physics nature of dark energy is an exciting

possibility.

Further potential experimental programs for IAXO may include: 1) the search for axionic dark radiation [42],

2) the realization of microwave LSW experiments among different bores of the IAXO magnet [43], and 3) the direct

detection of relic cold DM axions [44] or ALPs using microwave cavities or antennas in different configurations within

the IAXO magnet. The physics potential of all these options is under study, but they certainly offer possibility for

IAXO to become a first-class multi-purpose generic facility for axion research.
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Figure 3. Expected sensitivity of IAXO compared with current bounds from CAST and ADMX. Future prospects of ADMX (dashed brown region)

and ALPS-II [40] (light blue line) are also shown. Additionally, theoretically favored regions are shown for axions within the yellow model band

(classical axion window in dark orange, mixed axion-WIMP DM in light orange, white dwarf cooling hint within the area surrounded by the dashed

blue line ) and for ALPs at low masses (brown dashed line for transparency hint, red dashed diagonal line for ALP cold DM). For more details on

these well motivated regions of the axion paramter space see Reference [2].

2. Experimental Setup

2.1. Superconducting Magnet for IAXO
The IAXO magnet [3, 45] was designed with the optimization of the IAXO figure of merit (FOM) [1] in mind. For

practical reasons as well as cost and risk reduction the only parameter of the magnet’s FOM (MFOM, fm = L2B2A)

that can be significantly increased is the magnet aperture A, since the most suitable magnet technology is based on

NbTi superconducting magnets yielding magnetic fields of up to B = 6 T. Increasing the length complicates the

movement of the experiment to track the Sun and also reduces the accessible axion mass range due to the coherence

condition [31]. Already early design studies showed a preference for a toroidal configuration similar to the ATLAS

magnet. The envisioned 250 t IAXO magnet will have eight magnet coils of 21 m length and have a diameter of 1 m

leading to overall cryostat dimensions of about 25 m in length and 5.2 m outer diameter. When operated at nominal

currents of 12.3 kA, peak fields of 5.4 T will be reached storing 500 MJ of energy. With this properties the achievable

MFOM is fm = 300 relative to the one obtained for CAST’s 21 T2m4 ( fm(CAST) = 1). Details on the magnet design

and its layout optimization can be found in Reference [3]. A detailed description of the conductor, its peak magnetic

field and forces as well as the analysis of the operation stability can be found in the same reference along with layouts

of the electrical circuit powering the toroid, the cryogenic systems needed for operation and the compatibility of

the complete system with movement requirements. Furthermore the magnet system reliability has been studied and

various fault scenarios have been developed together with basic operational strategies to be followed in case of such

operational failures. A plan for the assembly of the cryostat and its integration into the rest of the experiment has been

mapped out and the construction of a prototype coil is envisioned to validate the design and to reduce risks remaining

even though the current design is based on extensive experience from the ATLAS magnets, since the IAXO peak fields

are high (non-trivial superconductor development and training of the coils).

2.2. Reflective X-Ray Optics for IAXO
The choice for the eight IAXO telescopes that will focus any x-ray signal from axion-to-photon conversion in

the cold bore onto the detectors are reflective x-ray telescopes utilizing segmented, slumped glass optics as the basic
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Figure 4. Side (left) and edge-on view (right) of one IAXO optic including the hexagonal suport structure that is intended to be used to mount the

telescopes into the magnet bores. The optic consists of more than two thousand individual mirror segments arranged in 123 layers.

fabrication approach. This mature technology has been developed for the NuSTAR satellite mission [46, 47] and relies

on multiple individual substrate pieces to form a single shell of a nested Wolter-I-like telescope. The substrates can

be coated with multilayers, i.e. alternating layers of low- and high-density materials, such as e.g. W/Si or W/B4C,

increasing the reflectivity of the mirrors and extending the energy range accessible to the optics. Another advantage

of this type of optics is that they are low-cost and can leverage existing experience of IAXO collaborators as well as

state-of-the-art assembly technology inherited from NuSTAR. The imaging requirements for IAXO are rather modest

in terms of focusing the central 3′′ core of the Sun and segmented, slumped glass optics have sufficient resolution

while focusing the core in a very compact focused spot. The telescope prescription and reflective coatings have been

optimized such that the optic’s FOM (OFOM, fo = εo/
√

s) was maximized implying a large focusing efficiency εo
and a minimized focusing spot size s while taking into account practical constraints, such as for example a feasible

focal length, necessary field of view (FOV), i.e the extent to which the optic can focus photons arriving off-axis. The

current IAXO optics design (see Figure 4) foresees 8 telescopes (one per magnet bore) with 123 layers per optic,

which implies the use of a total of 2172 mirror segments per telescope.The optimal focal length f is 5 m, a tradeoff

between a spot size as small as possible, i.e., small f , and the highest possible throughput, i.e. large f . The shell

radii range from 50 − 300 mm yielding a total geometric mirror area of 0.38 m2 per optic. W/B4C multilayers are the

best current option to cover the 1 − 10 keV passband for the IAXO axion search combining high reflectivities with

well-studied material properties which is important for a precise multilayer deposition.

2.3. Low-Background X-Ray Detectors for IAXO

The most promising contenders for the IAXO x-ray detectors are small Time Projection Chambers (TPC) with

a thin entrance window and a Micromegas readout that is pixelated. The employed manifacturing technique is the

microbulk technology, as currently used at the CAST experiment. Extensive R&D work on this type of detector

over recent years [48, 49] has contributed to achieving extremely low background levels of the order of 10−6 counts

keV−1cm−2s−1 with this type of detector. An even better background reduction down to 10−7 counts keV−1cm−2s−1

seems feasible using appropriately designed active vetos. The key parameters to achieve these very low levels of

background as compared to earlier Micromegas generations are (1) an improved fabrication technology over more

conventional techniques (microbulk technology), (2) high radiopurity of all raw materials used for the construction of

the detectors and any nearby support structure, (3) efficient active and passive shielding adopted from underground

experiments and adjusted for IAXO constraints (e.g., space and weight restrictions due to the moving platform),

and (4) powerful offline background rejection algorithms capable of reducing the raw backgrounds by two to three

orders of magnitude in the energy range of interest. Like for the magnet and the optics, the detector FOM (DFOM,

fd = εd/
√

b) has been optimized to obtain a maximal efficiency εd at minimal background rates b. Currently work

is progressing to build and test a prototype detector and test optics system for IAXO. This system will be installed
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and tested at CAST in Summer 2014 delivering operational experience that can feed back into the final IAXO design

process while it simultaneously increases the sensitivity of the CAST experiment.

2.4. Other Equipment and Infrastructure

Apart from the key parts for IAXO (magnet, optics, detectors) several additional parts of the general infrastructure

are under investigation, including but not limited to the general assembly of the experimental setup, its rotating

platform and a gas system for a second data taking campaign after the initial vacuum phase to extend the axion search

in the mass parameter space. The IAXO collaboration is also investigating additional equipment that even though

based on less mature technology promises potential improvements for the experiment beyond its base performance

requirements. An example are alternative detector technologies such as GridPix detectors, Transition Edge Sensors

(TES) as well as low-noise CCDs and microwave cavities or antennas. More details on these technologies and their

portential application for IAXO can be found in Reference [3].

3. Conclusions

In summary, IAXO is a fourth-generation axion helioscope concept that envisions the construction of a dedicated

magnet and x-ray optics to dramatically increase its sensitivity compared to CAST, currently the most powerful axion

helioscope. IAXO also has the potential to serve as multi-purpose facility for generic axion and ALP research in the

next decade. Together helioscopes, haloscopes and laboratory searches can provide a complementary approach to

close in on axions and other dark matter candidates.
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