17 research outputs found

    Biomedical potential of cyanobacteria and algae

    Get PDF
    Cyanobacteria have appeared on the primordial Earth over three billion years ago and still thrive in most habitats. These photosynthetic microbes have remarkable genetic plasticity and variability and have evolved an amazing arsenal of biochemical pathways that exert defence mechanisms and produce metabolites unique to them. By forming plastids, endosymbiont cyanobacteria contributed to the development of plants. Algae, the simplest plants, thrive in similar habitats and face the same challenges of the ever changing environment as cyanobacteria; and they have maintained similarity to them, with respect to production of unique metabolites and utilizing unique pathways. The exploration of these natural compounds and the biochemical pathways leading to their production provide excellent tools in fighting some major challenge that mankind needs to face in our days. In this contribution we briefly list the benefits that the genetics of these microbes and the produced compounds can offer, with emphasis on possible medical relevance. We mention applications in basic science, industry and agriculture, and list the potentials in medical drug development, therapy and nutrition of some enzymes, polysaccharides, polyphenols, pigments, peptides and lipids, among others, in the current state of the world-wide research on the topic

    The phosphomimetic mutation of syndecan-4 binds and inhibits Tiam1 modulating Rac1 activity in PDZ interaction-dependent manner

    Get PDF
    The small GTPases of the Rho family comprising RhoA, Rac1 and Cdc42 function as molecular switches controlling several essential biochemical pathways in eukaryotic cells. Their activity is cycling between an active GTP-bound and an inactive GDP-bound conformation. The exchange of GDP to GTP is catalyzed by guanine nucleotide exchange factors (GEFs). Here we report a novel regulatory mechanism of Rac1 activity, which is controlled by a phosphomimetic (Ser179Glu) mutant of syndecan-4 (SDC4). SDC4 is a ubiquitously expressed transmembrane, heparan sulfate proteoglycan. In this study we show that the Ser179Glu mutant binds strongly Tiam1, a Rac1-GEF reducing Rac1-GTP by 3-fold in MCF-7 breast adenocarcinoma cells. Mutational analysis unravels the PDZ interaction between SDC4 and Tiam1 is indispensable for the suppression of the Rac1 activity. Neither of the SDC4 interactions is effective alone to block the Rac1 activity, on the contrary, lack of either of interactions can increase the activity of Rac1, therefore the Rac1 activity is the resultant of the inhibitory and stimulatory effects. In addition, SDC4 can bind and tether RhoGDI1 (GDP-dissociation inhibitor 1) to the membrane. Expression of the phosphomimetic SDC4 results in the accumulation of the Rac1-RhoGDI1 complex. Co-immunoprecipitation assays (co-IP-s) reveal that SDC4 can form complexes with RhoGDI1. Together, the regulation of the basal activity of Rac1 is fine tuned and SDC4 is implicated in multiple ways

    Phycobilisome rod mutants in Synechocystis sp. strain PCC6803

    No full text

    An evaluation of the various aspects of the progress in clinical applications of laser driven ionizing radiation

    No full text
    There has been a vast development of laser-driven particle acceleration (LDPA) using high power lasers. This has initiated by the radiation oncology community to use the dose distribution and biological advantages of proton/heavy ion therapy in cancer treatment with a much greater accessibility than currently possible with cyclotron/synchrotron acceleration. Up to now, preclinical experiments have only been performed at a few LDPA facilities; technical solutions for clinical LDPA have been theoretically developed but there is still a long way to go for the clinical introduction of LDPA. Therefore, to explore the further potential bio-medical advantages of LDPA has pronounced importance. The main characteristics of LDPA are the ultra-high beam intensity, the flexibility in beam size reduction and the potential particle and energy selection whilst conventional accelerators generate single particle, quasi mono-energetic beams. There is a growing number of studies on the potential advantages and applications of Energy Modulated X-ray Radiotherapy, Modulated Electron Radiotherapy and Very High Energy Electron (VHEE) delivery system. Furthermore, the ultra-high space and/or time resolution of super-intense beams are under intensive investigation at synchrotrons (microbeam radiation and very high dose rate (> 40 Gy/s) electron accelerator flash irradiation) with growing evidence of significant improvement of the therapeutic index. Boron Neutron Capture Therapy (BNCT) is an advanced cell targeted binary treatment modality. Because of the high linear energy transfer (LET) of the two particles (7Li and 4He) released by 10BNC reaction, all of the energy is deposited inside the tumour cells, killing them with high probability, while the neighbouring cells are not damaged. The limited availability of appropriate neutron sources, prevent the more extensive exploration of clinical benefit of BNCT. Another boron-based novel binary approach is the 11B-Proton Fusion, which result in the release of three high LET alpha particles. These promising, innovative approaches for cancer therapy present huge challenges for dose calculation, dosimetry and for investigation of the biological effects. The planned LDPA (photons, VHEE, protons, carbon ions) at ELI facilities has the unique property of ultra-high dose rate (> Gy/s-10), short pulses, and at ELI-ALPS high repetition rate, have the potential to develop and establish encouraging novel methods working towards compact hospital-based clinical applications. © 2017 IOP Publishing Ltd and Sissa Medialab srl

    Reconsidering Dogmas about the Growth of Bacterial Populations

    Get PDF
    The growth of bacterial populations has been described as a dynamic process of continuous reproduction and cell death. However, this is far from the reality. In a well fed, growing bacterial population, the stationary phase inevitably occurs, and it is not due to accumulated toxins or cell death. A population spends the most time in the stationary phase, where the phenotype of the cells alters from the proliferating ones, and only the colony forming unit (CFU) decreases after a while, not the total cell concentration. A bacterial population can be considered as a virtual tissue as a result of a specific differentiation process, in which the exponential-phase cells develop to stationary-phase cells and eventually reach the unculturable form. The richness of the nutrient had no effect on growth rate or on stationary cell density. The generation time seems not to be a constant value, but it depended on the concentration of the starter cultures. Inoculations with serial dilutions of stationary populations reveal a so-called minimal stationary cell concentration (MSCC) point, up to which the cell concentrations remain constant upon dilutions; that seems to be universal among unicellular organisms

    A second isoform of the ferredoxin:NADP oxidoreductase generated by an in-frame initiation of translation

    No full text
    Ferredoxin:NADP oxidoreductases (FNRs) constitute a family of flavoenzymes that catalyze the exchange of reducing equivalents between one-electron carriers and the two-electron-carrying NADP(H). The main role of FNRs in cyanobacteria and leaf plastids is to provide the NADPH for photoautotrophic metabolism. In root plastids, a distinct FNR isoform is found that has been postulated to function in the opposite direction, providing electrons for nitrogen assimilation at the expense of NADPH generated by heterotrophic metabolism. A multiple gene family encodes FNR isoenzymes in plants, whereas there is only one FNR gene (petH) in cyanobacteria. Nevertheless, we detected two FNR isoforms in the cyanobacterium Synechocystis sp. strain PCC6803. One of them (FNR(S) ≈34 kDa) is similar in size to the plastid FNR and specifically accumulates under heterotrophic conditions, whereas the other one (FNR(L) ≈46 kDa) contains an extra N-terminal domain that allows its association with the phycobilisome. Site-directed mutants allowed us to conclude that the smaller isoform, FNR(S), is produced from an internal ribosome entry site within the petH ORF. Thus we have uncovered a mechanism by which two isoforms are produced from a single gene, which is, to our knowledge, novel in photosynthetic bacteria. Our results strongly suggest that FNR(L) is an NADP(+) reductase, whereas FNR(S) is an NADPH oxidase

    Anisotropic Circular Dichroism of Light-Harvesting Complex II in Oriented Lipid Bilayers: Theory Meets Experiment

    No full text
    Anisotropic circular dichroism (ACD) spectroscopy of macroscopically aligned molecules reveals additional information about their excited states that is lost in the CD of randomly oriented solutions. ACD spectra of light-harvesting complex II (LHCII)-the main peripheral antenna of photosystem II in plants-in oriented lipid bilayers were recorded from the far-UV to the visible wavelength region. ACD spectra show a drastically enhanced magnitude and level of detail compared to the isotropic CD spectra, resolving a greater number of bands and weak optical transitions. Exciton calculations show that the spectral features in the chlorophyll Q y region are well-reproduced by an existing Hamiltonian for LHCII, providing further evidence for the identity of energy sinks at chlorophylls a603 and a610 in the stromal layer and chlorophylls a604 and a613 in the lumina] layer. We propose ACD spectroscopy to be a valuable tool linking the three-dimensional structure and the photophysical properties of pigment-protein complexes
    corecore