1,386 research outputs found

    Monogamy of Bell correlations and Tsirelson's bound

    Get PDF
    We consider three parties, A, B, and C, each performing one of two local measurements on a shared quantum state of arbitrary dimension. We characterize the trade-off between the nonlocality of the Bell correlations observed by AB and of those observed by AC. This generalizes Tsirelson's bound on the quantum value of the CHSH inequality, the latter being recovered when C is completely uncorrelated with AB. We also discuss the trade-off between Bell violations and local expectation values of observables that anticommute with the ones used in the Bell test

    U.S. CONSUMER ATTITUDES TOWARD FOOD BIOTECHNOLOGY

    Get PDF
    This study examines consumer attitudes in the U.S. toward genetically modified food over time. Five surveys conducted by the International Food Information Council (1999 - 2001) are used to determine what factors significantly influence consumers' willingness to try food products genetically modified to reduce pesticide usage or improve taste.Consumer/Household Economics,

    Ginzburg-Landau theory for the conical cycloid state in multiferroics: applications to CoCr2_2O4_4

    Full text link
    We show that the cycloidal magnetic order of a multiferroic can arise in the absence of spin and lattice anisotropies, for e.g., in a cubic material, and this explains the occurrence of such a state in CoCr2_2O4_4. We discuss the case when this order coexists with ferromagnetism in a so called `conical cycloid' state, and show that a direct transition to this state from the ferromagnet is necessarily first order. On quite general grounds, the reversal of the direction of the uniform magnetization in this state can lead to the reversal of the electric polarization as well, without the need to invoke `toroidal moment' as the order parameter.Comment: 6 pages, 3 figures, accepted for publication in Phys. Rev.

    Dynamic coordinated control laws in multiple agent models

    Full text link
    We present an active control scheme of a kinetic model of swarming. It has been shown previously that the global control scheme for the model, presented in \cite{JK04}, gives rise to spontaneous collective organization of agents into a unified coherent swarm, via a long-range attractive and short-range repulsive potential. We extend these results by presenting control laws whereby a single swarm is broken into independently functioning subswarm clusters. The transition between one coordinated swarm and multiple clustered subswarms is managed simply with a homotopy parameter. Additionally, we present as an alternate formulation, a local control law for the same model, which implements dynamic barrier avoidance behavior, and in which swarm coherence emerges spontaneously.Comment: 20 pages, 6 figure

    Clash of symmetries on the brane

    Get PDF
    If our 3+1-dimensional universe is a brane or domain wall embedded in a higher dimensional space, then a phenomenon we term the ``clash of symmetries'' provides a new method of breaking some continuous symmetries. A global GctsGdiscreteG_{\text{cts}} \otimes G_{\text{discrete}} symmetry is spontaneously broken to HctsHdiscreteH_{\text{cts}} \otimes H_{\text{discrete}}, where the continuous subgroup HctsH_{\text{cts}} can be embedded in several different ways in the parent group GctsG_{\text{cts}}, and Hdiscrete<GdiscreteH_{\text{discrete}} < G_{\text{discrete}}. A certain class of topological domain wall solutions connect two vacua that are invariant under {\it differently embedded} HctsH_{\text{cts}} subgroups. There is then enhanced symmetry breakdown to the intersection of these two subgroups on the domain wall. This is the ``clash''. In the brane limit, we obtain a configuration with HctsH_{\text{cts}} symmetries in the bulk but the smaller intersection symmetry on the brane itself. We illustrate this idea using a permutation symmetric three-Higgs-triplet toy model exploiting the distinct II-, UU- and VV-spin U(2) subgroups of U(3). The three disconnected portions of the vacuum manifold can be treated symmetrically through the construction of a three-fold planar domain wall junction configuration, with our universe at the nexus. A possible connection with E6E_6 is discussed.Comment: 30 pages, 9 embedded figure

    A Discotic Disguised as a Smectic: A Hybrid Columnar Bragg Glass

    Get PDF
    We show that discotics, lying deep in the columnar phase, can exhibit an x-ray scattering pattern which mimics that of a somewhat unusual smectic liquid crystal. This exotic, new glassy phase of columnar liquid crystals, which we call a ``hybrid columnar Bragg glass'', can be achieved by confining a columnar liquid crystal in an anisotropic random environment of e.g., strained aerogel. Long-ranged orientational order in this phase makes {\em single domain} x-ray scattering possible, from which a wealth of information could be extracted. We give detailed quantitative predictions for the scattering pattern in addition to exponents characterizing anomalous elasticity of the system.Comment: 4 RevTeX pgs, 2 eps figures. To appear in PR

    A Lattice-Boltzmann model for suspensions of self-propelling colloidal particles

    Full text link
    We present a Lattice-Boltzmann method for simulating self-propelling (active) colloidal particles in two-dimensions. Active particles with symmetric and asymmetric force distribution on its surface are considered. The velocity field generated by a single active particle, changing its orientation randomly, and the different time scales involved are characterized in detail. The steady state speed distribution in the fluid, resulting from the activity, is shown to deviate considerably from the equilibrium distribution.Comment: 8 pages, 13 figure

    Sub-Micron CMOS Characterisation for Single Chip Wireless Applications

    Get PDF
    This paper describes a multifunctional, electronically reconfigurable, small/large signal load pull measurement system and its integrated use with BSIM 3v3 for modelling of sub-micron CMOS transistors and sub-circuits. This turnkey measurement system can be electronically configured from a battery of instruments in order to characterise minimum noise, optimum power, intermodulation, dc and S-parameters, together with harmonic response and dynamic load line information under both source and load pull conditions. The instrumentation provides validation data against the BSIM physical model simulator. Hence, for the first time measurement of all of the significant devices parameters can be made for the device operated under all possible primary modes for model validation so that optimal circuit design can be carried out in a holistic fashion

    Sliding Phases in XY-Models, Crystals, and Cationic Lipid-DNA Complexes

    Full text link
    We predict the existence of a totally new class of phases in weakly coupled, three-dimensional stacks of two-dimensional (2D) XY-models. These ``sliding phases'' behave essentially like decoupled, independent 2D XY-models with precisely zero free energy cost associated with rotating spins in one layer relative to those in neighboring layers. As a result, the two-point spin correlation function decays algebraically with in-plane separation. Our results, which contradict past studies because we include higher-gradient couplings between layers, also apply to crystals and may explain recently observed behavior in cationic lipid-DNA complexes.Comment: 4 pages of double column text in REVTEX format and 1 postscript figur

    The Communication Cost of Simulating Bell Correlations

    Full text link
    What classical resources are required to simulate quantum correlations? For the simplest and most important case of local projective measurements on an entangled Bell pair state, we show that exact simulation is possible using local hidden variables augmented by just one bit of classical communication. Certain quantum teleportation experiments, which teleport a single qubit, therefore admit a local hidden variables model.Comment: 4 pages, 2 figures; reference adde
    corecore