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We show that discotics, lying deep in the columnar phase, can exhibit an x-ray scattering pattern which
mimics that of a somewhat unusual smectic liquid crystal. This exotic, new glassy phase of columnar
liquid crystals, which we call a “hybrid columnar Bragg glass,” can be achieved by confining a columnar
liquid crystal in an anisotropic random environment of, e.g., strained aerogel. Long-ranged orientational
order in this phase makes single-domain x-ray scattering possible, from which a wealth of information
could be extracted. We give detailed quantitative predictions for the scattering pattern in addition to
exponents characterizing anomalous elasticity of the system.

PACS numbers: 64.60.Fr, 61.30.Gd, 82.65.Dp
Until now, the x-ray scattering pattern given in Fig. 1
would be identified with a system in a somewhat unusual
smectic phase with short-ranged translational and long-
ranged orientational order within the smectic layers, i.e.,
a smectic composed of nematic, rather than liquid, layers.
The set of on-axis quasisharp Bragg peaks along qh is a
signature of the quasi-long-ranged translational order (i.e.,
the periodicity of the layering) that is characteristic of the
bulk smectic phase. The presence of the other, broadened,
peaks and the azimuthal anisotropy about the qh axis re-
spectively indicate the incipient short-ranged translational
order and the long-ranged orientational order within the
smectic layers oriented perpendicular to qh.

In this Letter we predict the existence of a remarkable
new “hybrid columnar Bragg glass” (HCBG) phase [1,2]
which, despite differing fundamentally from the smectic
phase described above, shares the same qualitative scat-
tering pattern illustrated in Fig. 1. Such mimickry of one
phase by a completely different phase is unprecedented.

Columnar phases in pure, bulk (i.e., quenched-disorder-
free) liquid crystals are phases that have long-ranged trans-
lational order in two directions, and short-ranged
translational order (i.e., liquidlike correlations) in the third.
I.e., they are regular two-dimensional lattices of one-
dimensional liquid columns [Fig. 2(a)]. In this Letter, we
show that when such a system is confined in an anisotropic
quenched random environment, e.g., strained aerogel [3],
it becomes translationally disordered, but remains topo-
logically ordered (i.e., free of topological defects such as
dislocations). This novel state is the HCBG.

Like the smectic phase, the HCBG has translational or-
der that is quasi-long-ranged in one direction and short
ranged in another, as implied by Fig. 1. As illustrated
in Fig. 2(b), the columns remain in roughly equidistant
rows perpendicular to the stretching direction, but lose
long-ranged translational order within each row. Nev-
ertheless, the hexagonal orientational order is preserved,
albeit uniaxially distorted due to the stretch. However,
there are a number of fundamental differences between
0031-9007�00�85(20)�4309(4)$15.00
the two phases. First, unlike the smectic phase, the expo-
nent hG characterizing the shape of the quasi-long-ranged
translational order peaks at G, which are given by I�q� ~

jq 2 Gj231hG , is independent of temperature. This prop-
erty would allow the scattering patterns of the two phases
to be distinguished through comparison of the line shapes
as temperature is varied. Second, the correlations of the
quasi-long-ranged order in the HCBG scale isotropically
in space, in contrast to the well-known strongly anisotropic
scaling of these correlations in the smectic. The third and
most crucial difference between the two phases is their
topological order, which distinguishes their elasticities but
not their scattering. Specifically, the absence of the extra
direction of long-ranged translational order, in the smec-
tic phase, is caused by free topological defects, namely,
unbound dislocations with Burgers vectors along the smec-
tic planes. Although the HCBG also exhibits transla-
tional order that is quasi-long-ranged in one direction and
short ranged in another, at long length scales it is distin-
guished from the smectic by being free of these unbound

FIG. 1. X-ray scattering pattern in the � plane for a class of
hybrid columnar Bragg glass.
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FIG. 2. (a) Alignment of the lattice for a uniaxial stretch.
(b) Schematic of the distorted lattice in real space (top view).

dislocations, which would otherwise destroy the columnar
phase topology of HCBG. One important experimental
consequence of this absence of free dislocations is that the
HCBG retains elastic resistance to distortions in the extra
direction, albeit, as we discuss below, of a very strange,
anomalous sort.

Of course, for sufficiently strong disorder free disloca-
tions will eventually proliferate. The anisotropy, imposed
by the strained aerogel, leads to the interesting possibility
that dislocations with their Burgers vectors in the soft di-
rection may unbind before those with their Burgers vectors
in the hard direction, leading to the sequence of disorder-
driven phase transitions HCBG ! m � 1 smectic Bragg
glass [4] ! nematic elastic glass [5] with increasing aero-
gel density.

The rest of this Letter gives a more detailed theoretical
description of the HCBG phase, including x-ray correlation
lengths and universal exponents characterizing the anoma-
lous elasticity. We relegate the technical details to a future
publication [6].

Our model for a columnar phase consists of disk-shaped
molecules with normals aligned along the ẑ direction. The
disks form a hexagonal lattice in the xy ��� plane and have
liquidlike correlations along ẑ, as illustrated in Fig. 2(a).
We assume, and verify a posteriori, that despite consid-
erable distortion, for sufficiently weak quenched disorder,
the columnar phase topology is stable, i.e., our discotic
liquid crystal remains free of unbound dislocations. Con-
sequently this system can be described within an elastic
theory, with a two-component (x and y) lattice site dis-
placement vector u�r� and the discotic director n̂�r� (the
normal to the disks) as the only important long length-scale
degrees of freedom. The disordering tendency of the aero-
gel is twofold: the strands act both to randomly pin the
columnar lattice �u�r�� and to distort the orientations of
the disk normals �n̂�r��. Our starting Hamiltonian is that
of a pure hexagonal discotic in isotropic aerogel,

H �
Z

r

∑
B�

2
j≠zu 2 dnj2 1

1
2

lu�
ii u�

jj 1 mu�
iju�

ij

1 Re
X

i

Vi�r�eiGi?u�r� 2 �g�r� ? n̂�2

∏
1 HF�n̂� .

(1)
4310
where u�
ij �

1
2 �≠�

i uj 1 ≠
�
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tationally invariant symmetric strain tensor, dn�r� �
n̂�r� 2 ẑ, the B� term reflects the tendency of the
molecular director (disk normal) n̂�r� to lie along the local
tangent t̂ � ẑ 1 ≠zu to the liquidlike columns, HF�n̂�
is the Frank free energy of the molecular directors, and
Vi�r� is a complex random pinning potential that couples
to lattice site fluctuations along the reciprocal lattice basis
vector, Gi . At long length scales its correlations can be
accurately represented as zero mean with short-ranged
Gaussian statistics: Vi�r�V �

j �r0� � D̃V d
�
ij dd�r 2 r0� [5],

where throughout this paper x denotes a quenched average
over the disorder of the quantity x, while �x	 denotes a
thermal average. The last term describes the tendency
of the disk normals n̂�r� to align along the random local
aerogel strand directed along g�r�. This “random tilt”
disorder is described by short-ranged isotropic correla-
tions gi�r�gj�r0� � 1�2

p
Ddijd

d�r 2 r0� [5]. DV and D

are phenomenological parameters which, in the simplest
microscopic model, are proportional to the aerogel density,
rA. As for smectics [5], only these two types of disorder
have important long distance effects.

A detailed analysis [5,6] has shown that this system ex-
hibits a columnar Bragg glass phase with only short-ranged
translational order. However, this changes if the aerogel is
anisotropic. Aerogel anisotropy could be realized, e.g., by
applying a strain to the strands. For heterotropic alignment
between the disk normals and strands (assumed through-
out), a uniaxial compression will lead to a phase in the
same universality class as the Bragg glass phase of an
Abrikosov flux lattice [1,2], with quasi-long-ranged trans-
lational order in both directions of the � plane [6]. The
more interesting HCBG phase with quasi-long-ranged or-
der in only one � direction can be obtained by applying a
uniaxial stretch to the strands. For homeotropic alignment
of strands and disk normals, the two phases reverse with
respect to stretch and compression leaving all of our other
predictions unchanged.

Uniaxial stretch to the aerogel strands (along êh)
causes the disk normals to align � to this axis of stretch
(Fig. 2). This can be accounted for by the addition of
a term

R
r g�êh ? n̂�2 to the Hamiltonian, where g is a

phenomenological parameter, which we expect to be a
monotonically increasing function of rA and strain. The
uniaxial stretch also breaks both the hexagonal symmetry
of the lattice and its rotation invariance. Thus, we are
forced to consider both a more general lattice structure and
an elastic Hamiltonian that is not invariant under rotations
of the lattice. We can take into account both of these
effects by replacing the harmonic pieces of the hexagonal
elastic energy

R
r� 1

2lu�
ii u�

jj 1 mu�
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ij � with the more
general harmonic elastic energy 1
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where the elastic constant tensor Cijkl is not symmetric
under interchange of its first two or second two indices,
due to the lack of in-plane rotation invariance just dis-
cussed. The terms cubic and quartic in u in (1) must also
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be so generalized, of course. Because of the B� term in
Eq. (1), fluctuations of n̂ from the local column tangent
t̂ are small, i.e., dn � ≠zu.

We have analyzed [6] this generalization of the model
[Eq. (1)] by using renormalization group (RG) methods
[5]. One of the most surprising conclusions of this analy-
sis is that, at long length scales, fluctuations uh � êh ? u
along the direction of stretch decouple from those us �
ês ? u orthogonal to this direction, where we have de-
noted the axis of stretch, êh, as “hard” �h� and called
the other � axis, orthogonal to êh “soft” �s�, i.e., r� �
�rh, rs�. That is, all couplings between us and uh that are
present in the full elastic tensor Cijkl are effectively irrele-
vant, leaving Cijkl in the form Cijkl � Bssdisdjsdksdls 1

Bshdisdjhdksdlh 1 Bhsdihdjsdkhdls 1 Bhhdihdjhdkhdlh.
The total Hamiltonian for the system can therefore be

expressed as a sum of decoupled Hamiltonians for uh and
us: Htot�uh, us� � HXY �uh� 1 Hm�1�us�, with

HXY �
1
2

Z
r

"
gj≠zuhj

2 1 Bshj≠suhj
2 1 Bhhj≠huhj

2

1 Re
X

i

Vi�r�ei�Gi ?êh�uh�r�
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These two parts of Htot, which describe the fluctuations
of the hard and soft phonon fields uh and us, are not new.
Hamiltonians of precisely this form have been previously
used to describe the random field XY model [2] and the
“m � 1 smectic Bragg glass” [4], respectively, and have
been studied extensively [1]. However, a columnar phase
confined in anisotropic aerogel, whose Hamiltonian, Htot,
is a combination, or hybrid, of the two, is entirely novel.

The uh fluctuations of our system are the same as those
of a random field XY model (with anisotropic stiffness) and
are given by ����uh�r� 2 uh�0����2	 � C�d� lnr�G2

0h, where
G0h is the lattice spacing of the projection of the dis-
cotic reciprocal lattice onto the hard axis. They diverge
logarithmically as a function of distance, implying that
the translational order along the hard direction is quasi-
long-ranged. While these elastic distortions are reminis-
cent of the famous Landau-Peierls lnr fluctuations of bulk
smectics, they differ crucially in two ways. Firstly, they
are disorder, rather than thermally, driven with C�d� uni-
versal �C�3� � 1.1� and the logarithm persisting in all
2 , d , 4. Secondly, they are isotropic in their scaling.
In contrast, in a bulk smectic the layer fluctuations within
the layers scale differently from those along the normal to
the layers.

In Hm�1, the combination of relevant anharmonic terms
and large disorder-induced us fluctuations leads to strong
anomalous elasticity [5,6]. By anomalous elasticity we
mean that the full, anharmonic theory with constant K ,
Bss, and D can, at small wave vector k ø j
21
NL (where

jNL is a nonuniversal length determined by material pa-
rameters, e.g., aerogel density), be effectively replaced by
a harmonic theory with wave vector dependent K , Bss, and
D, given by

K�k� � Kk2hK
z fK �kh�kzh

z , ks�kzs
z � , (3a)

Bss�k� � Bssk
hB
z fB�kh�kzh

z , ks�kzs
z � , (3b)

D�k� � Dk2hD

z fD�kh�kzh
z , ks�kzs

z � . (3c)

Bhs is not significantly renormalized, that is,
Bhs�k� � Bhs, independent of wave vector. Here
the anisotropy exponents zs � 2 2 �hB 1 hK ��2
and zh � 2 2 hK�2. The exponents, evaluated using
the RG and a high precision e-expansion were found to
be hK � 0.50, hB � 0.26, and hD � 0.13 [4,6]. We
also predict that the anomalous exponents will obey the
following exact scaling relation in d � 3:

1 1 hD � hB�2 1 2hK . (4)

The translational order of the system along the soft direc-
tion is short ranged and is characterized by the algebraic
and anisotropic divergence of us correlations,
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where we have defined dus�r� � us�r� 2 us�0�, xz �
1 2 hK 1 hB�2 1 hD � hB 1 hK , xs,h � xz�zs,h,
and jz � K2B

1�2
sh ��DB

1�2
ss �. The exact scaling relation (4)

could be experimentally tested by using the more general
expressions for xz , xs, xh in terms of all three exponents,
and verifying that hB, hK , and hD obey the relation (4).
Our e-expansion results for the h’s imply xz � 0.76,
xs � 0.47, and xh � 0.43. The fluctuations given in
Eq. (5), like those along the hard direction, are disorder,
rather than thermally driven.

Despite this lack of translational order, our detailed cal-
culations [6] indicate that dislocation loops remain bound
for weak disorder, and therefore the low temperature phase
replacing the columnar phase must be distinct from the
smectic and hexatic, separated from them by a thermody-
namically sharp dislocation unbinding phase transition.

The stability of this exotic glass phase is contingent upon
our assumption of long-ranged orientational order. We val-
idate this assumption by calculating �jn�r� 2 n�0�j2	 �
�j≠zu�r� 2 ≠zu�0�j2	 and showing that it does not diverge
as r ! ` [6]. Although equilibration into the ground state
might be slow and therefore require field alignment, this
orientational order would allow experimentalists to inves-
tigate single-domain samples of HCBG. The anisotropic
scaling information which is usually lost in a powder av-
eraged x-ray scattering experiment would be retained in a
single-domain experiment, allowing detailed tests of our
predictions for hK , hB, and hD.
4311
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The scattering pattern in the � plane, obtained from
a single-domain sample, would consist of a set of spots
rather than the set of rings that one would expect from
a powder sample. This pattern depends crucially on the
relative orientations within the � plane of the reciprocal
lattice and the axis of stretch, êh, which could vary from
discotic to discotic since it depends on the microscopic
interactions between the disks and strands. The intensity
of a Bragg spot at a reciprocal lattice vector G is

I�G� ~
Z

r
exp
2��G ? ���u�r� 2 u�0�����2	�2� (6a)

~
Z

r
exp
2�G2

h����uh�r� 2 uh�0����2	

1 G2
s ����us�r� 2 us�0����2	��2� . (6b)

Unless Gs � 0, the algebraically diverging us fluctuations
dominate the logarithmically diverging uh fluctuations and
the integrand is stretched-exponentially damped, leading
to an anisotropically broadened Bragg peak. If, however,
Gs � 0, then the exponential becomes r20.55n2

, where
n � Gh�G0h, with G0h being the magnitude of the small-
est G lying on the hard axis, and for n , 3 the integral
diverges as r ! `, leading to quasisharp peaks for those
n’s. We therefore predict two classes of hybrid columnar
Bragg glasses. The first, which we call a commensurate
HCBG, has some reciprocal lattice vectors that lie along
the hard axis, and will exhibit a scattering pattern with
peaks lying on the hard axis, with the first two quasisharp.
In the second, incommensurate HCBG, class, all of the
peaks lie off the hard axis, and are anisotropically broad-
ened by the contribution from the us fluctuations. The
smecticlike scattering pattern (Fig. 1), with a quasisharp
peak on the first ring, will therefore be observed only for
commensurate HCBG’s.

The dependence of the anisotropically broadened peak
widths on the bare elastic constants is the same for both
4312
classes of HCBG. Setting the u 2 u correlation functions
[given in Eq. (5)] equal to G22

s , and solving for �rz �
jX

z �21, �rs � jX
s �21, and �rh � j

X
h �21 gives the width of

the peak at G along the z, s, and h directions:

�jX
z �21 � j21

z �G2
s K�Bss�x21

z , (7a)

�jX
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z �K�Bss�1�2�G2
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s , (7b)
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z �K�Bsh�1�2�G2
s K�Bss�x

21
h . (7c)

The temperature dependence of j
X
z,s,h could be used to

determine the exponents hK , hB and hD since the bulk
K�T �, Bss�T �, and Bsh�T � in Eqs. (7a)–(7c) have T de-
pendences that can be extracted from data on bulk ma-
terials. A more direct way to observe the anomalous
elasticity would be a measurement of the u 2 u correla-
tion function I�q� ~ �jus�dq�j2	, which can be obtained
[6] for large q (i.e., q’s with at least one component big-
ger than the corresponding inverse x-ray correlation length
quoted above) by looking at an intermediate regime in the
“tails” of the broad x-ray scattering peaks. In those tails,
[i.e., for q � G 1 dq with j

21
NL ¿ jdqaj ¿ �jx

a �21 for
at least one Cartesian direction a � �h, s, z� [7] ], it can
be shown that

I�q� ~
D�dq�q2

z

�Bss�dq�dq2
s 1 K�dq�dq4

z 1 Bhsdq2
h�2

. (8)

Hence, the q dependence of Bss�q�, K�q�, and D�q� in
Eqs. (3a) and (3b) could be tested directly by a fit of scat-
tering data to these tails.

A related experimental approach, which has the advan-
tage of not being restricted to wave vectors larger than the
inverse x-ray correlation lengths, but can, rather, explore
arbitrarily small q’s, is light scattering, which measures
director fluctuations. These can be related to the u 2 u
correlations via our condition dn � ≠zu. This yields

�jdns�q�j2	 �
D�q�q4

z

�Bss�q�q2
s 1 K�q�q4

z 1 Bhsq
2
h�2

, (9a)
�jdnh�q�j2	 �

Ω
�C�3��2G2

0h� �q2
z �q3�, commensurate

kBTq2
zG�q� 1 Dh�q�q4

zG�q�2, incommensurate
, (9b)
where Dh�q� in Eq. (9b) is a renormalized q-dependent
tilt disorder variance obeying the scaling law
Dh�q� � Dhq2�hD1hB�

z fDh �qh�qzh
z , qs�qzs

z � and G�q� �
1��Bshq2

s 1 gq2
z 1 Bhhq2

h�. The commensurate and
incommensurate cases differ because in the commensurate
case there is a random field acting on uh, while in the
incommensurate case there is no random field, leaving the
random tilt as the dominant disorder.
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