3,161 research outputs found
The nucleon-sigma coupling constant in QCD Sum Rules
The external-field QCD Sum Rules method is used to evaluate the coupling
constant of the light isoscalar-scalar meson (``'' or \epsilon) to the
nucleon. The contributions that come from the excited nucleon states and the
response of the continuum threshold to the external field are calculated. The
obtained value of the coupling constant is compatible with the large value
required in one-boson exchange potential models of the two-nucleon interaction.Comment: 11 pages, 4 figure
Deuteron Dipole Polarizabilities and Sum Rules
The scalar, vector, and tensor components of the (generalized) deuteron
electric polarizability are calculated, as well as their logarithmic
modifications. Several of these quantities arise in the treatment of the
nuclear corrections to the deuterium Lamb shift and the deuterium hyperfine
structure. A variety of second-generation potential models are used and a
(subjective) error is assigned to the calculations. The zero-range
approximation is used to analyze a subset of the results, and a simple
relativistic version of this approximation is developed.Comment: 14 pages, LaTex - submitted to Physical Review
An evaluation of the breeding strategies used in the development of the Dorper sheep and the improved Boer goat of South Africa
European air quality maps 2005 including uncertainty analysis
The objective of this report is (a) the updating and refinement of European air quality maps based on annual statistics of the 2005 observational data reported by EEA Member countries in 2006, and (b) the further improvement of the interpolation methodologies. The paper presents the results achieved and an uncertainty analysis of the interpolated maps and builds upon earlier reports from Horalék et al. (2005; 2007)
\pi N scattering in relativistic baryon chiral perturbation theory revisited
We have analyzed pion-nucleon scattering using the manifestly relativistic
covariant framework of Infrared Regularization up to {\cal O}(q^3) in the
chiral expansion, where q is a generic small momentum. We describe the
low-energy phase shifts with a similar quality as previously achieved with
Heavy Baryon Chiral Perturbation Theory, \sqrt{s}\lesssim1.14 GeV. New values
are provided for the {\cal O}(q^2) and {\cal O}(q^3) low-energy constants,
which are compared with previous determinations. This is also the case for the
scattering lengths and volumes. Finally, we have unitarized the previous
amplitudes and as a result the energy range where data are reproduced increases
significantly.Comment: 26 pages, 5 figures, 5 table
Pertinent Dirac structure for QCD sum rules of meson-baryon coupling constants
Using general baryon interpolating fields for
without derivative, we study QCD sum rules for meson-baryon couplings and their
dependence on Dirac structures for the two-point correlation function with a
meson i\int d^4x e^{iqx} \bra 0|{\rm T}[J_B(x)\bar{J}_B(0)] |{\cal M}(p)\ket.
Three distinct Dirac structures are compared: ,
i\gamma_5\fslash{p}, and structures.
From the dependence of the OPE on general baryon interpolating fields, we
propose criteria for choosing an appropriate Dirac structure for the coupling
sum rules. The sum rules satisfy the
criteria while the sum rules beyond the chiral limit do not. For
the i\gamma_5\fslash{p} sum rules, the large continuum contributions prohibit
reliable prediction for the couplings. Thus, the structure seems pertinent for realistic predictions. In the SU(3) limit,
we identify the OPE terms responsible for the ratio. We then study the
dependence of the ratio on the baryon interpolating fields. We conclude the
ratio for appropriate choice of the interpolating fields.Comment: To be published in Phys.Rev.C ; 21 pages,8 figures, revtex ;
references are adde
Soft-core meson-baryon interactions. II. and scattering
The potential includes the t-channel exchanges of the scalar-mesons
and f_0, vector-meson , tensor-mesons f_2 and f_2' and the
Pomeron as well as the s- and u-channel exchanges of the nucleon N and the
resonances , Roper and S_{11}. These resonances are not generated
dynamically. We consider them as, at least partially, genuine three-quark
states and we treat them in the same way as the nucleon. The latter two
resonances were needed to find the proper behavior of the phase shifts at
higher energies in the corresponding partial waves. The soft-core -model
gives an excellent fit to the empirical S- and P-wave phase shifts up
to T_{lab}=600 MeV. Also the scattering lengths have been reproduced well and
the soft-pion theorems for low-energy scattering are satisfied. The
soft-core model for the interaction is an SU_f(3)-extension of the
soft-core -model. The potential includes the t-channel exchanges
of the scalar-mesons a_0, and f_0, vector-mesons , and
, tensor-mesons a_2, f_2 and f_2' and the Pomeron as well as u-channel
exchanges of the hyperons and . The fit to the empirical S-, P- and D-wave phase shifts up to T_{lab}=600 MeV is reasonable and
certainly reflects the present state of the art. Since the various
phase shift analyses are not very consistent, also scattering observables are
compared with the soft-core -model. A good agreement for the total and
differential cross sections as well as the polarizations is found.Comment: 24 pages, 20 PostScript figures, revtex4, submitted to Phys. Rev.
Analytical Validation of Variants to Aid in Genotype-Guided Therapy for Oncology
The Clinical Laboratory Improvement Amendments (CLIA) of 1988 requires that pharmacogenetic genotyping methods need to be established according to technical standards and laboratory practice guidelines before testing can be offered to patients. Testing methods for variants in ABCB1, CBR3, COMT, CYP3A7, C8ORF34, FCGR2A, FCGR3A, HAS3, NT5C2, NUDT15, SBF2, SEMA3C, SLC16A5, SLC28A3, SOD2, TLR4, and TPMT were validated in a CLIA-accredited laboratory. As no known reference materials were available, DNA samples that were from Coriell Cell Repositories (Camden, NJ) were used for the analytical validation studies. Pharmacogenetic testing methods developed here were shown to be accurate and 100% analytically sensitive and specific. Other CLIA-accredited laboratories interested in offering pharmacogenetic testing for these genetic variants, related to genotype-guided therapy for oncology, could use these publicly available samples as reference materials when developing and validating new genetic tests or refining current assays
Decade-Scale Trend in Sea Water Salinity Revealed Through δ18O Analysis of Montastraea annularis Annual Growth Bands
Stable oxygen isotope ratios (δ18O) of coral skeletons are influenced by ambient water temperature and by the oxygen isotope ratio in the surrounding sea water, which, in turn, is linked to evaporation (salinity) and precipitation. To investigate this relationship more thoroughly, we collected hourly temperature data from the Hen and Chickens Reef in the Florida Keys between 1975 and 1988 and compared them to the δ18O of Montastraea annularis skeleton that grew during the same interval. To ensure that we obtained the correct oxygen isotopic range in the skeleton we typically sampled the coral at a resolution of 20–30 samples in 1 year; in 1 year we sampled the coral at a resolution of 70 samples·year−1. Despite our high-resolution sampling, we were unable to obtain the full temperature-induced δ18O range in the skeleton. Our data suggest that, during the summer, evaporation causes isotopic enrichment in the water, partially masking the temperature-induced signal. Our data also show that oxygen isotopic composition of seawater at the reef has increased since 1981. This increase indicates that salinity has increased slightly during the past decade, perhaps as a result of increased evaporation in waters of Florida Bay and the Keys. This phenomenon is probably not caused by a decrease in the outflow of freshwater into Florida Bay from the Everglades but may be related to the measured deficit in precipitation that has occurred over the past decade
- …
