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The external-field QCD Sum Rules m ethod is used to evaluate the coupling constant of the light 

isoscalar-scalar meson ( “a ” or e) to the nucleon. The contributions th a t come from the excited 
nucleon states and the response of the continuum threshold to the external field are calculated. The 
obtained value of the coupling constant is compatible w ith the large value required in one-boson 
exchange potential models of the two-nucleon interaction.
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I. IN T R O D U C T IO N

T he values of the  m eson-baryon coupling constan ts are of p articu lar in terest in understanding  the  nucleon-nucleon 
(NN) [1, 2] and hyperon-nucleon (YN) [3, 4] in teractions in term s of e.g. one-boson exchange (OBE) models. The 
scalar m esons p lay a significant role in such phenom enological po ten tia l models. The s tru c tu re  and even the s ta tu s  
of the scalar m esons have, however, always been controversial [5, 6]. In  early  O BE m odels for the NN in teraction  
the exchange of an isoscalar-scalar “a ” m eson w ith  a m ass of abou t 500 MeV was needed to  ob ta in  enough m edium 
range a ttra c tio n  and a sufficiently strong spin-orbit force. It  was only la ter understood  th a t  the  exchange of a broad  
isoscalar-scalar meson, the e(760), sim ulates th e  exchange of such a low-mass “a ” [7]. The e(760) is difficult to  detect 
because it is broad and hidden under the strong signal from the p0(770). T here are strong argum ents from chiral 
sym m etry  for th e  existence of such a light isoscalar-scalar m eson approxim ately  degenerate w ith the p meson [8].

In the quark  model, the sim plest assum ption for the  stru c tu re  of the scalar mesons is the  3P 0 qq s ta tes. In  th is case, 
the scalar m esons m ight form a com plete nonet of dressed qq s ta tes, resulting from  e.g. th e  coupling of the P-w ave 
qq s ta te s to  m eson-m eson channels [9]. Explicitly, the u n ita ry  singlet and octet states, denoted  respectively by ei and 
e8, read

t l  =  (uü +  dd + s s ) / \ / 3 ,
£$ =  (uü +  dd — 2ss)/\/6 . (1)

The physical sta tes are m ixtures of the  pure S U (3)-flavor states, and are w ritten  as
e =  cos 0s e i +  sin 0s e8 ,

fo =  -  sin ds ei +  cos ds eg . (2)
For ideal m ixing holds th a t  ta n # s =  l / \ / 2  or 0S ~  35.3°, and thus one would identify

e(760) =  (uü +  dd)/\/2 ,
fo(980) =  -as . (3)
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The iso trip let m em ber of the octet is a ± ’°(980), where
ag(980) =  (uü — dd)/\/2. (4)

An alternative  and arguably  m ore n a tu ra l explanation  for the masses and decay properties of the lightest scalar 
m esons is to  regard  these as cryptoexotic q2q2 s ta te s [10]. In the M IT bag model, the scalar qq sta tes are predicted  
around  1250 MeV, while the a ttrac tiv e  color-m agnetic force results in a low-lying nonet of scalar q2q2 m esons [10, 11]. 
This nonet contains a nearly  degenerate set of I  =  0 and I  = 1  states, which are identified as the f°(980) and a ± ’°(980) 
a t the K K  threshold, where

ag(980) =  (sdsd — susü)/V2,

fo(980) =  (sdsd-j- susü)/\/2 , (5)
w ith  the ideal-m ixing angle ta n 0 s =  —a/2 or 0S ~  —54.8° in th is case. T he light isoscalar m em ber of the  nonet is

e(760) =  udüd,. (6)
The nonet is com pleted by the  strange m em ber k(880), which like the e(760) is difficult to  detect because it is hidden 
under the strong  signal from the K * (892) [5, 6]. In  keeping w ith  o ther recent works [12, 13, 14] we will use in th is 
paper the nom enclature (a± ’°, f ° ,a ,  k) for the scalar-m eson nonet, where one should identify a  =  e(760), b u t we will 
no t rely on a p articu lar theoretical prejudice abou t the quark  s tru c tu re  of the light scalar mesons.

One way to  m ake progress w ith the scalar m esons is to  study  the ir role in the various tw o-baryon reactions (NN, 
YN, YY). O ur aim  in th is paper is to  calculate the  nucleon-a coupling constan t gNNa by using the QCD Sum  Rules 
(QCDSR) m ethod  [15]. Q CDSR links the hadronic degrees of freedom  w ith the underlying QCD param eters, and 
serves as a powerful tool to  ex trac t qualita tive and quan tita tive  inform ation abou t hadron  properties [16, 17]. In  th is 
framework, one s ta rts  w ith  a correlation function th a t  is constructed  in term s of hadron  in terpo lating  fields. O n the 
theoretical side, the correlation function is calculated using the O pera to r P ro duct Expansion (O PE) in the Euclidian 
region. This correlation function is m atched w ith  an Ansatz th a t  is in troduced in term s of hadronic degrees of freedom 
on the phenom enological side. The m atching provides a de term ination  of hadronic param eters like baryon masses, 
m agnetic m om ents, coupling constan ts of hadrons, and so on.

T he Q CDSR m ethod  has been extensively used to  investigate m eson-baryon coupling constants. One usually s ta rts  
w ith  the vacuum -to-vacuum  m atrix  elem ent of the correlation function th a t  is constructed  w ith  the  in terpolating  
fields of two baryons and one meson. However, th is th ree-po in t function m ethod  has as a m ajo r draw back th a t  a t 
low m om entum  transfer the O P E  fails. Moreover, when the m om entum  of the m eson is large, the la tte r  is plagued 
by problem s w ith higher resonance contam ination  [18]. A m ethod  th a t  can be used a t low m om entum  transfer is the 
external-field m ethod  [19]. T here are two form ulations th a t  can be used to  construct the external-field sum  rules: The 
first one is to  s ta r t  w ith a vacuum -to-vacuum  transition  m atrix  elem ent of the nucleon in terpo lating  fields. In th is 
approach, no vacuum -to-m eson m atrix  elem ents occur, b u t one has to  know the response of the various condensates 
in the vacuum  to  the external field, which can be described by a susceptibility  x . This m ethod  has been used to  
determ ine the  m agnetic m om ents of baryons [19, 20, 21, 22], the nucleon axial coupling constan t [22, 23], the  nucleon 
sigm a te rm  [24], and  baryon isospin m ass splittings [25]. In the second approach, one s ta rts  w ith a vacuum -to-m eson 
transition  m atrix  elem ent of the nucleon in terpo lating  fields, where some o ther tran sitio n  m atrix  elem ents should be 
evaluated [16]. (This is also the s ta rtin g  point of the  light-cone Q CD SR m ethod .) In  [26], pion-nucleon coupling 
constan t was calculated  in the soft m eson lim it using th is approach. L ater it was pointed  ou t th a t  the sum  rule 
for pion-nucleon coupling in the soft-m eson lim it can be reduced to  the  sum  rule for the nucleon m ass by a chiral 
ro ta tio n  so the coupling was calculated  again w ith a finite m eson m om entum  [27]. These calculations were im proved 
considering the coupling schemes a t different D irac s truc tu res and beyond the chiral lim it contributions [28, 29, 30]. 
This coupling constan t has also been calculated using the vacuum -to-vacuum  m ethod  [31, 32], and it was pointed  out 
th a t  the sum  rule th a t  is constructed  for the coupling is independent and it is no t reduced to  the nucleon m ass sum  
rule by a chiral ro ta tion .

In th is paper, we calculate the nucleon-a coupling constan t gNNa by  using the external-field Q CDSR m ethod. 
We evaluate the vacuum -to-vacuum  transition  m atrix  elem ent of the two-nucleon in terpolating  fields in an external 
isoscalar-scalar field, and construct two sum  rules, one of which leads to  a stable result w ith respect to  variations 
in the  Borel mass. We also com pute the  contributions th a t  come from the excited nucleon sta te s and the response 
of the continuum  threshold  to  the  ex ternal field. Previously, the strong  and weak (parity-violating) pion-nucleon 
coupling constan ts [31, 33] and the coupling constan ts of the  vector m esons p(770) and w(782) to  the nucleon [34] 
were calculated by using th is m ethod.

We will com pare our result for the coupling constan t w ith the value from a successful O BE m odel of the  NN 
in teraction , the Nijmegen soft-core po ten tia l [1, 2], which was originally derived from Regge-pole theory. (The
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coupling constan ts of th is O BE m odel were analyzed from the point of view of the  large-Nc expansion of QCD in 
Ref. [35].) It  is then  im portan t to  realize th a t  in NN poten tia l m odels the  coupling constan ts of the heavy m esons to  
the nucleon are determ ined by the ( “non-peripheral” ) S -, P -, and  D-waves. Therefore, the fits to  th e  sca ttering  d a ta  
are sensitive to  e.g. the  volume in tegral of the O B E potentials, which is p roportional to  the coupling a t t =  0 [36] 
(t =  —p 2, where p is the  four-m om entum  of the m eson). The coupling constan ts obtained  from the external-field 
Q CD SR m ethod  are also defined a t t =  0, and therefore the com parison to  the  O B E m odel is appropriate.

O ur paper is organized as follows: In Section II we present the  form ulation of Q CDSR w ith  an external isoscalar- 
scalar field and construct the  relevant sum  rules. We give the num erical analysis of the sum  rules and discuss the 
results in Section I I I . Finally, we arrive a t our conclusions in Section IV .

II . N U C L E O N  S U M  R U L E S  IN  A N  E X T E R N A L  S C A L A R  F IE L D

In the external-field Q CDSR m ethod  one s ta rts  w ith  the correlation function of the nucleon in terpolating  fields in 
the presence of an ex ternal constan t isoscalar-scalar field a , defined by

n 7(q) =  i ƒ  d4x eiq x (0\T[m (x)fjN ( 0 ) ] | ^  , (7)

where nN is th e  Ioffe nucleon in terpo lating  field [37]
m  =  tabc[uTC ißub] i5 ißdc . (8)

Here a, b, c denote the color indices, and T and C  denote transposition  and charge conjugation, respectively. The 
ex ternal scalar field contributes to  the correlation function in Eq. (7) in two ways: F irst, it d irectly  couples the  quark  
field in the nucleon curren t and second, it modifies the  condensates by polarizing the  QCD vacuum . In the presence 
of an ex ternal scalar field there  are no correla tors th a t  break Lorentz invariance, like (qaßvq) which appears in the 
case of an external electrom agnetic field F . However, the correlators already  existing in the vacuum  are m odified 
by the  ex ternal field, viz.

( jq )7 =  (qq) +  g7xa(qq) ,

(gcqa ■ Gq)„ =  (gcqa ■ Gq) +  g7x oa(gcq<r ■ Gq) , (9)
where g7 is the  quark -a  coupling constan t and, x  and  xa  are the susceptibilities corresponding to  quark  and mixed 
quark-gluon condensates, respectively. We have assum ed th a t  the responses of the up and the down quarks to  the 
external (isoscalar) field are the  same.

In the Euclidian region, the  O P E  of the product of two in terpo lating  fields can be w ritten  as

n 7 (q) =  £  C7 (q)On , (10)
n

where Cn7 (q) are th e  W ilson coefficients and On are the  local operato rs in term s of quark  and gluon fields. At the 
quark  level, we have

( 0 | t [r)N(x)fjN( 0 ) ] | ^  =  2ieabcea'b'c'T r { S f  (x)7„ C[S„aa' (x)]T C 7M}757 ^Sdc'(x )7 v75 . (11)

In order to  calculate the  W ilson coefficients, we need the  quark  propagato r in the presence of the  external sigm a field. 
In coordinate space the full quark  p ropagato r takes the form

Sq ( x ) =  S (° ) (x )+  S (7)( x ) , (12)
where

i S(°)ab =  (0|T[qa(x )sb(0)|0 )c

+ xa»1') - — {qq) ~ — — {gcqcr ■ G q ) , (13)
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and
i S(7)ab =  (0|T[qa (x)q-b(0)|0)7

gq7 a “  32 ^K ^ G ^ H - x  ) -  29 xc3̂ 2 x ln(-x )

i fiab Sabx i fiabr 2
+ ~ ^ { q q )x  -  - j ^ - ( w )  +  2r x 32 (9cqcr ■ Gq)x

xabx2 -,
-  — XG(gcW-Gq)\. (14)

In these expressions, G^v is th e  gluon field tensor and g2 =  4 n a s is th e  quark-gluon coupling constan t squared. We 
do not include term s th a t  are proportional to  the quark  masses, since these term s give negligible contribu tions to  the 
final result.

Using the quark  p ropagato r in Eq. (12), one can com pute the  correlation function n 7 (q). The d iagram s th a t  we 
use to  calculate the W ilson coefficients of n 7 (q) are shown in Fig. 1. Lorentz covariance and p arity  im ply th a t  n 7 (q) 
takes the form

n 7 (q) =  (n7  +  n 7  q)a  +  (n °  +  n ° q ) , (15)
where q =  qM7M. Here n °  and  n °  represent the  invariant functions in the vicinity of the ex ternal field, which can be 
used to  construct the m ass sum  rules for the  nucleon, and n 7  and  n 7  denote the invariant functions in the presence 
of the ex ternal field. Using these invariant functions, one can derive the sum  rules a t the s truc tu res 1 and q. n 7  and 
n i  are evaluated as follows:

1
(2n)4

4
n l ( q )  —  g „  , 4  a q  l n ( - g 2 ) -  x  t t ?  a t  +  7 r é a q  ~  (x +  X g )  7 7 - 7  , (16)

and
1 q4 2 10n <r(«) =  “  y  ln (“ « ) “  7^2aq - X a qq H ~ q  ) +  X G y « g H ~ q  )

+  g l n ( - 9 2) - X y y « g _  , (17)

where we have defined aq =  —(2n)2(jq), b =  (g^G2), and m° =  (gcq<r ■ Gq)/(qq).

We now tu rn  to  the calculation of the hadronic side. We sa tu ra te  th e  correla tor in Eq. (7) w ith nucleon sta te s and 
w rite

n'W  = Ä  <n \„n ) » f  , (is)
q2 - m n  q2 - MN

where M N is the m ass of the nucleon. The m atrix  element of the curren t nN between the vacuum  and  the nucleon 
s ta te  is defined as

(0|nN |N  ) =  Xn  u ,  (19)
where Xn  is th e  overlap am plitude and u is the  D irac spinor for the nucleon, norm alized as uu  =  2M N . Inserting 
Eq. (19) in to  Eq. (18) and defining gNN7  via the in teraction  L agrangian density

L =  -gNN7  uua , (20)
we ob ta in  for the hadronic p a rt

_  IA  12 g  +  M n  q + M n

q2 -  N<T q2 _  ■ (21)

In addition, there  are contributions com ing from the excitations to  higher nucleon sta te s which are w ritten  as
■v A q + Mpf q + MN*

- q2 _ M 2N 9NN*o- q2 _  M ^_  , (22)

2 2
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and

as well as con tribu tions com ing from the in term ediate sta te s due to  a-N  scattering , i.e. the  continuum contributions. 
The te rm  th a t  corresponds to  the  excitations to  higher nucleon sta tes also has a pole a t th e  nucleon mass, b u t a single 
pole instead  of a double one like in Eq. (21). This single-pole te rm  is no t “dam ped” after the Borel transform ation  
and should be included in the calculations.

Finally, there  is another contribu tion  th a t  comes from the response of the continuum  to  the external field, given by

r  ~ A s° ĥ S (s-so)ds, (23)° a - q2
where a° is th e  continuum  threshold, Aa° is the  response of the continuum  threshold  to  the  ex ternal field, and b(s) 
is a function th a t  is calculated  from the O PE . W hen A a° is large, th is te rm  should also be included in the hadronic 
p a r t  [38].

T he QCD sum  rules are obtained  by m atching the O P E  side w ith  the hadronic side and applying the Borel 
transform ation . The resulting sum  rules are:

- M 4 aqE 0 + \X M 2 a 2 L 4/ 9 - ^  M 2 aq L ~ 14/ 27 -  (x + Xg ) ^  a 2 L ^

=  9NN.  +  B q ^  ^  Asg M 2 , (24)
g7 g7 2g7

2 M 8 E 2 L - 4/s +  y  M 2 a 2 L4/9 + 2X a,qM 6 E x - x g  m\ aq M 4 E 0 L -14/2r 

- b- M 4 E 0L-4/9 + x ^ M 2 aq

=  - m l  -  M 2) %  gNNa + B 1^  + ^ a q sl A M 2 e( ^ - ^ 2 , (25)
gq gq gq

where M  is the Borel m ass and we have defined XN =  32n4XN. The continuum  contributions are included by the 
factors

E° =  1 -  e-s0/M2 ,

El s  1 - e - W  (l + J j ) ,
*  - + ^  + <»>

where a° are th e  continuum  thresholds w ith i =  1, q. In  the  sum  rules above, we have included the single-pole 
contributions w ith  the  factors Bi . The th ird  term s on the righ t-hand  side (RHS) of Eqs. (24) and (25) denote the 
contributions th a t  are explained in Eq. (23). These term s are suppressed by the factor e-(s°-MN)/M as com pared to  
the single-pole term s. We have incorporated  the effects of the  anom alous dim ensions of the  various operators th rough  
the factor L  =  ln (M 2/hQoD  V  ln(P2/AQCD) .

I I I .  A N A L Y S IS  O F  T H E  S U M  R U L E S  A N D  D IS C U S S IO N

In th is Section we analyze the sum  rules derived in the previous Section in order to  determ ine the value of gNN7  . 
We observe th a t  the sum  rule in Eq. (24) is m ore stable th an  the o ther sum  rule in Eq. (25), so we use only th is sum  
rule for the  num erical analysis. Such a com parison and conclusion have been m ade abou t these sum  rules also in some 
earlier works [24, 25].

In order to  calculate gNN7, we need to  know the values of the scalar susceptibilities x  and x G. The value of the 
susceptibility  x  can be calculated by using the tw o-point function [24]

T (p2) =  i f  d4xeip 'x ^ 0 T  [u(x)u(x) +  d(x)d(x), u (0 )u(0) +  d(0)d(0)] 0^ , (27)

via the relation

x(qq) = (28)
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The tw o-point function in Eq. (27) a t p2 =  0 has been calculated in chiral p e rtu rb a tio n  theory  [39] w ith the result

X =  4 ( - i l  +  - h  -  — ) , (29)A 16tr2/ 4 VS 3 6 J ’ V ;
where f n =  93 MeV is the  pion decay constan t and l 1 and  l 2 are low-energy constan ts appearing in the effective 
chiral Lagrangian. The values of these low-energy constan ts have been estim ated  previously in various works (see e.g. 

Ref. [40] for a review). A recent analysis of n -n  scattering  gives l 1 =  -1 .9  ±  0.2 and l 2 =  5.25 ±  0.04 [40], which 
is consistent w ith earlier determ inations, b u t w ith sm aller uncertainties. Using these values of l 1 and  l 2 and tak ing  
the quark  condensate aq =  0.51 ±  0.03 GeV3, we find x  =  - 1 0  ±  1 G eV - 1 . The value of the susceptibility  x a is less 
certain . Therefore, we allow xG to  vary in a wider range. We also adopt b =  4.7 x 10-1  GeV4, XN =  2.1 GeV6, 
and m"2 =  0.8 G eV 2 [19, 41]. We take M N =  0.94 GeV, the  renorm alization  scale ^  =  0.5 GeV, and  the QCD scale 
p aram eter A q CD = 0 .1  GeV. It is relevant to  point ou t th a t  the  choice of the  tw o-point function in Eq. (27) does not 
im ply a theoretical prejudice abou t the  stru c tu re  of the scalar mesons. W h at is calculated is ju s t the  susceptibility  
perta in ing  to  the response of the quark  condensates (qq) to  the  scalar qq field, as shown in Eq. (9 ).

To proceed to  the num erical analysis, we arrange the  RHS of Eq. (24) in the  form

f  (M 2) =  Aq +  BqM 2 +  CqM 2L -4/9e(MN-sq)/M 2 , (30)
and fit the  left-hand side (LHS) to  f  (M 2). Here we have defined

_  ~2 MN A q =  N — ~ 9 N N a ,

Bq
Bq

(s°)q)2
Ca =  ^ - A  S%. (31)9 2<£ 0 V '

In Fig. 2, we present the Borel m ass dependence of the LHS and the RHS of Eq. (24) for s° =  2.3 and xa =  x  =  - 1 0  
G eV - 1 . We choose the Borel window 0.8 G eV 2 <  M 2 <  1.4 G eV 2 which is com m only identified as the fiducial region 
for the nucleon m ass sum  rules [19]. It  is seen th a t  the LHS curve (solid) overlies the  RHS curve (dashed). In  order to  
estim ate the contribu tions th a t  come from the excited nucleon sta te s and the  response of the continuum  threshold, we 
p lo t each te rm  on the RHS individually. We observe th a t  the single-pole term s (do tted) give very sm all contribution, 
b u t the response of the continuum  threshold  (dot-dashed) is quite sizable. Nevertheless, the sum m ation of these 
curves w ith  the line of the double-pole te rm  (sm all-dashed) gives a stable sum  rule.

In  Fig. 3, we plot the Borel m ass dependence of the four term s on the LHS of Eq. (24) separately, together w ith 
the ir sum m ation for s° =  2.3 GeV2 and x a =  x  =  - 1 0  G eV - 1 . This helps us to  com pare the  contributions of different 
operato rs on the  O P E  side. Here O 1 denotes the  first term , O 2 denotes th e  second term , and so on. We observe th a t
O 1 and O 3 are small, O 4 is sizable, and O 2 is large. The te rm  O4 contributes w ith  different sign w ith  respect to  O 1 

and O 3, and so tends to  cancel the la tte r. Therefore gNN7 is m ainly determ ined by O 2 on the LHS.
In order to  see th e  sensitiv ity  of the coupling constan t on the continuum  threshold  and the susceptibility  x , we plot 

in Fig. 4 the dependence of gNN7/ g7  on x  for th ree  different values s° =  2.0, 2.3, and 2.5 GeV2, and tak ing  x =  x G. 
One sees th a t  gNN7 changes by approxim ately  8% in the considered region of the susceptibility  x . The value of gNN7 

is no t very sensitive to  a change in s°, which gives an uncerta in ty  of approxim ately  6% to  the  final value. Taking into 
account the uncerta in ty  in x , s°, and aq, the predicted  value for gNN7/ g7  of the  sum  rule in Eq. (24) reads

gNN7 /g7 =  3.9 ±  1 .0 . (32)
In a sim ilar way, one can calculate the o ther two term s on the  RHS of Eq. (24) as:

B q =  -0 .2  ±  1.2 GeV5 ,
Cq =  -7 .9  ±  2.9 GeV5 . (33)

As noted  above, the value of the susceptibility  xa  is less certa in  th an  the  value of x . If we let xa  change in a wider 
range, say 6 G eV -1  <  - x a <  14 G eV - 1 , th is brings an additional 15% uncerta in ty  to  the  value quoted  in Eq. (32).

T he ra tio  in Eq. (32) is in agreem ent w ith  the  naive quark  model, which gives gNN7 /gq7 =  3 based on counting the 
u- and the d-quarks in the nucleon. (Ideal m ixing in the scalar sector is assum ed above, th a t  is, the  sigm a m eson is

g
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taken w ithout a strange-quark  content.) A nother estim ate can be m ade from the ra tio  of pion-nucleon to  pion-quark 
coupling constant, gNNn/g 'K„ . Since the  a  m eson is the chiral p a r tn e r of the pion [8], one expects

gNN7/ gq =  gNNn/ gq . (34)
Using the G oldberger-Treim an relation  for bo th  the pion-nucleon and the pion-constituent quark  couplings,

A M nQNNit — 9 n ~ T ~  ;
jn

(35)
Jn

where m q is the  m ass of the constituen t quark, gNA and gqA are the  nucleon and the quark  axial couplings, respectively, 
one obtains [42]

9 N N -K  _  5  M j y  
9q 3 m q '

W ith  a constituen t-quark  m ass of 340 MeV [42], Eq. (36) yields gNNn/ gJ  =  4.6. Using Eq. (34) we find th a t  th is 
agrees nicely w ith  the Q CD SR result in Eq. (32).

To determ ine gNN7 , one next has to  assum e some value for the  quark -a  coupling constan t g7q. A dopting the value 
g7 =  3.7 as estim ated  from the sigm a m odel [43], we ob tain

gNN7 =  14.4 ±  3.7 . (37)
The coupling constan t in Eq. (37) is defined a t t =  0, i.e. gNN7 =  gNN7(t =  0). As stressed above, also in NN 
poten tia l m odels the heavy-m eson coupling constan ts are determ ined a t t =  0. The (large) value of gNN7 obtained 
in Eq. (37) is in agreem ent w ith  the value gNN7 =  16.9 from  the Nijmegen soft-core NN po ten tia l m odel [1], obtained 
from a fit to  the NN sca ttering  data .

IV . C O N C L U S IO N

We have calculated  the coupling constan t gNN7  of the isoscalar-scalar meson, which plays a significant role in O BE 
models of the NN and YN interactions, to  the  nucleon, using the external-field Q CDSR m ethod. O ur m ain result is 
the  ra tio  gNN7/gq in Eq. (32) which is determ ined purely  from QCDSR. The value of gNN7 is dependent on g7q, the 
value of which we use as estim ated  in the sigm a model. The obtained  value of gNN7 is in agreem ent w ith the large 
value found in O BE models. We have also com puted the  contributions th a t  come from  the excited nucleon sta te s and 
the  response of the continuum  threshold  to  the external field. We observe th a t  while the single-pole contributions are 
small, th e  response of the continuum  threshold  is sizable. We p lan  to  extend the external-field Q CD SR m ethod to  
the  hyperons and the com plete scalar-m eson nonet, in order to  address th e  SU (3)-flavor stru c tu re  of the  scalar-m eson 
coupling constan ts to  the  baryon octet [44].
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FIG. 1: The diagrams th a t were used to calculate the Wilson coefficients of the correlation functions n |  and n ^ . The solid, 
wavy, and the dashed lines represent the quark, gluon, and the external scalar field, respectively.
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M 2 (G eV 2)

FIG. 2: (Color online) The Borel mass dependence of LHS and the fitted RHS of Eq. (24) for s0 =  2.3 GeV2 and x g  =  X =  -1 0  
GeV- 1 . We also present the term s on the RHS individually. Note tha t the LHS curve (solid) overlies the RHS curve (dashed).

M 2 (G eV 2)

FIG. 3: (Color online) The four term s on the LHS of Eq. (24) individually, together w ith the sum m ation of them  for s0 =  2.3 
GeV2 and x G =  X =  -1 0  GeV-1 . Here O 1 denotes the first term , O 2 denotes the second term , and so on.
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X (GeV -1 )
FIG. 4: (Color online) The dependence of QNNq/  Qq on the susceptibility x  for three different values of s0 =  2.0, 2.3, and 2.5 
GeV2 ; here we take x  =  XG.


