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_ The external-field QCD Sum Rules method is used to evaluate the coupling constant of the |I_?ht
isoscalar-scalar meson (“a” or €) to the nucleon. The contributions that come from the excited
nucleon states and the response of the continuum threshold to the external field are calculated, The
obtained value of the coupllnﬂ]constant is compatible with the large value required in one-boson
exchange potential models of the two-nucleon interaction.
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| INTRODUCTION

The values of the meson-baryon coupling constants are of particular interest in understanding the nucleon-nucleon
(NN) T[4, 2] and hyperon-nucleon (IYNJ) [3, 4] interactions in terms of eg. one-hoson exchange (OBE) models. The
scalar mesons play a significant role in such phenomenological potential models. The structure and even the status
of the scalar mesons have, however, always been controversial [5, 6% In early OBE models for the NN interaction
the exchange of an isoscalar-scalar “a” meson with a mass of about 500 MeV was needed to obtain enough medium-
range attraction and a sufficiently stronlg spin-orbit force. 1t was only later understood that the exchange of a broad
isoscalar-scalar meson, the_eé?GO), simulates the exc.han?e of such a low-mass “a” [7]. The e(760) is difficult to detect
because it is broad and hidden under the .strongi signal from the p0(770). There are strong arguments from chiral
symmetry for the existence of such a light isoscalar-scalar meson apprommately degenerate with the p meson [g].

In the quark model, the simplest assumption for the structure of the scalar mesons is the 3P0 qq States. In this case,
the scalar mesons might form a complete nonet of dressed qq States, resulting from eg. the couplln?.of the P-wave
qg statgs to meson-meson channels [9?. Explicitly, the unitary singlet and octet states, (?enoted respectively by ei and
e8, rea

tl
£$

(ui * dd + $8)/\/3,
(uii + dd —2ss)/\/6 . (1)

The physical states are mixtures of the pure SU (3)-flavor states, and are written as

€ = C0Sosei t+ Sinoses,

fo = - SiNdsei*+ COSds€. 2)
For ideal mixing holds that tan#s = |/\/2 or os~ 35.3°, and thus one would identify

(ut + dd)/\/2,

f0(980) z -as . (3)
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The isotriplet member of the octet is a£*(980), where
a9(980) = (ua —ddy/\s2. 4)

An alternative and arguably more natural exPIanatlon for the masses and decay properties of the lightest scalar
mesons is to regard these as cryptoexotic g2q2 States [’10]. In the MIT bag model, the scalar qq States are predicted
around 1250 MeV, while the atfractive color-magnetic force results in a low-lying nonet of scalar q2q2 mesons [10, 11].
This nonet contains a nearly degenerate set of | = Oand | =1 states, which are identified as the £°(980) and a£ (980
at the k k threshold, where

ag(980)

fo(980)

(sdsd —susi)/V 2,
(sdsd—j- sust)/\/2 ()

with the ideal-mixing angle tan0s = —a/2 or os~ —54.8° in this case. The light isoscalar member of the nonet is
e(760) = udud,. (6)

The nonet is completed by the strange member k(880&, which like the e(760) is difficult to detect because it is hidden
under the strong signal from the K *(892) LS, 6]. In keeping with other recent works [12, 13, 14] we will use in this
paper the nomenclature gai”, f,a, k) for the scalar-meson nonet, where one should identify a = ¢(760), but we will
not rely on a particular theoretical prejudice about the quark structure of the light scalar mesons. _

One ‘way to make progress with the ‘scalar mesons is to study their role in the various two-baryon reactions (NN,
YN, YY). Our aim in this paper is to calculate the nucleon-a coupling constant gnna bY using the QCD Sum Rules
(QCDSR) method [15]. QCDSR links the hadronic degrees of freedom with the underlying QCD parameters, and
serves as a powerful tool to extract qualitative and quantitative information about hadron properties [16, 17]. In this
framework, one starts with a correlation function that is constructed in terms of hadron interpolating fields. On the
theoretical side, the correlation function is calculated using the Operator Product Expansion FO.PEJ In the Euclidian
region. This correlation function is matched with an ansatz that is introduced in terms of hadronic degrees of freedom
on the phenomenological side. The matchmg provides a determination of hadronic parameters like baryon masses,
ma19net|c moments, coupling constants of hadrons, and so on. .

The QCDSR method has been extensively used to investigate meson-baryon coupling constants. One usually starts
with the vacuum-to-vacuum matrix element of the correlation function that is constructed with the interpolating
fields of two barrons and one meson. However, this three-point function method has as a major drawback that at
low momentum transfer the OPE fails. Moreover, when the momentum of the meson is large, the latter is plagued
by problems with h|gher resonance contamination [18]. A method that can be used at low momentum transfer is the
external-field metho [l19]. There are two formulations that can be used to construct the external-field sum rules: The
first one is to start with"a vacuum-to-vacuum transition matrix element of the nucleon mterﬁolatm_g fields. In this
approach, no vacuum-to-meson matrix elements occur, but one has to know the response of the various condensates
in the vacuum to the external field, which can be described by a susceptibility x.. This method has been used to
determine the magnetic moments of baryons _[‘1.9, 20, 21, 22], the nucleon axial coupling constant [22, 23], the nucleon
sigma term [24], and baryon isospin mass splittings [25](' In"the second approach, one starts with a vacuum-to-meson
transition matrix_element of the nucleon interpolating Tields, where some other transition matrix elements should be
evaluated [16] (This is also the starting point of the light-cone QCDSR method.) In [‘ng pion-nucleon coupling
constant was calculated in the soft meson limit using this approach. Later it was pointed out that the sum rule
for pion-nucleon coupling in the soft-meson limit can be reduced to the sum rule for the nucleon mass by a chiral
rotation so the coupling was calculated again with a finite meson momentum [27]. These calculations were improved
con5|der|nrq the couplm% schemes at different Dirac structures and beyond the chiral limit contributions [28, 29, 30].
This coupling constant has also been calculated using the vacuum-to-vacuum method [31, 32], and it was pointed out
that the sum rule that is constructed for the coupling is independent and it is not reduced to the nucleon mass sum
rule by a chiral rotation, . . _

In this paper, we calculate the nucleon-a coupling constant gnna by using the external-field QCDSR method.
We evaluate the vacuum-to-vacuum transition matrix element of the two-nucleon interpolating fields in an external
isoscalar-scalar field, and construct two sum rules, one of which leads to a stable result with respect to variations
in the Borel mass. We also comﬁute the contributions that come from the excited nucleon states and the response
of the continuum threshold to the external field. Previously, the strong and weak (panty-vmlatm%) pion-nucleon
coupl|n? constants [31, 33] and the coupling constants of the vector mesons p(770) and w(782) to the nucleon [34]
were calculated by using this method. _ _
~ We will compare our result for the coupling constant with the value from a successful OBE model of the NN
interaction, the Nijmegen soft-core potential g[1, 2], which was originally derived from Regge-pole theory. (The
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coupling constants of this OBE model were analyzed from the point of view of the large-nc expansion of QCD in
Ref. [353.) It is then important to realize that in NN potential models the couRIm% constants of the heavY mesons to
the nucleon are determined by the (“non-peripheral”) S-, p-, and D-waves. Therefore, the fits to the scattering data
are sensitive to eg. the volume integral of the OBE potentials, which is proportional to the coupling at « = 0 _[3%]
t = —p2, where p is the four-momentum of the meson). The coupling constants obtained from the external-fiel

CDSR method are also defined at « = 0, and therefore the comparison to the OBE model is appropriate.

Our paper is organized as follows: In Section Il we present the formulation of QCDSR with an external isoscalar-
scalar field and construct the relevant sum rules. We give the numerical analysis of the sum rules and discuss the
results in Section I11. Finally, we arrive at our conclusions in Section IV,

II. NUCLEON SUM RULES IN AN EXTERNAL SCALAR FIELD

In the external-field QCDSR method one starts with the correlation function of the nucleon interpolating fields in
the presence of an external constant isoscalar-scalar field a, defined by

NT7(Q) = if dax eigx©ONTIm eofiN(0)]|" (7)

where nn is the loffe nucleon interpolating field [37]
m = tabc[uTC iBub]i5iRdc . 8)

Here a, b,c denote the color indices, and T and c denote transposition and charge con_Jug_atlon, respectively. The
external scalar field contributes to the correlation function in Eq. (7) in two ways: First, it directly couples the quark
field in the nucleon current and second, it modifies the condensates by polarizing the QCD vacuum. In the presence
of an external scalar field there are no correlators that break Lorentz invariance, like (qagve) Which appears in the
case of an external electromagnetic field = . However, the correlators already existing in the vacuum are modified
by the external field, viz.

(j9)7 = @a* g7xa(aa).
(gcga =Gq),, (gcqa m6q) + 7xo0a(geo<r mGq) 9)

where g7 is the quark-a couplln%_constant and, x and xa are the susceptibilities corresponding to quark and mixed
quark-gluon condensates, respectively. We have assumed that the responses of the up and the down quarks to the
external Esosgalar) field are the same. . o .

In the Euclidian region, the OPE of the product of two interpolating fields can be written as

n7(q) = £ Cl(qon, (10)

n

where Cﬂﬁq) are the Wilson coefficients and on are the local operators in terms of quark and gluon fields. At the
quark level, "we have

(0 [t rneoin(0)]|" = ziesbceatie T r{ S (x)7, C[S, 8" (¥)]TC IMITSTASA(X)7V75 (11)

In order to calculate the Wilson coefficients, we need the quark propagator in the presence of the external sigma field.
In coordinate space the full quark propagator takes the form

sa(X)= S(°)(x)+ S(7)(x), (12)
where
I seyab = (0|T[ga(x)sh(0)]0)c

+xa»l) - — {qq) ~ —— {gcqor w6 q), (13)



and
i snab = (0[T[ga(x)o-b(0)[0)7

gda « 327K MG MH -x )' 29x@'2x In(-x )
i fiab j, fiabr 2
+ L’l{QQ)X - S]‘E}P)'((W) t brIX r32(90qcr =G )X
xabx 2 5
- — XG(gcW-Gqg)\. (14)

In these expressions, c~v is the gluon field tensor and g2 = 4nas is the quark-gluon coupling constant squared. We
?‘0 r}ot |n|ctlude terms that are proportional to the quark masses, since these terms give negligible contributions to the
inal result.

Using the quark pro_?agator in Eq. (12), one can compute the correlation function n7(q3. The diagrams that we
%JSE totrc]alc%ulate the Wilson coefficients of n 7(q) are shown in Fig. 1. Lorentz covariance and parity imply that n7(q)
akes the form

n7(@)= (7 +n7gla+ (n°+n°q), (15)

where g = gMM Here n® and n° represent the invariant functions in the vicinity of the external field, which can be
used to construct the mass sum rules for the nucleon, and n7 and n7 denote the invariant functions in the presence
of the external field. Using these invariant functions, one can derive the sum rules at the structures 1and q. n7 and
ni are evaluated as follows:

1 4 2 2
ni(a) — g. (zn)ﬂaqln(-gﬂ- X tt? at + Tréagq - (X+ X g) 77-7 , (16)
and
4 1
1= L e e xaaa Hoa )+ XGYegH-q )
+gIn(-92) -Xyy«g_ (17)
where we have defined ag= —{(2n)2(jg), b= (9762), aNd m° = (gco<r MEa)/(qq). .
\_/;/e now turn to the ca?culﬁl(on)ofutﬂ)e hadronic sfde. We saturate the correlator in Eq. (7) with nucleon states and
write
N"W=A e f (is)

where m N is the mass of the nucleon. The matrix element of the current nN between the vacuum and the nucleon
state is defined as

(ONN) = xnu, (19)

where xn 1S the overlap amplitude and u is the Dirac sp_inor for the nucleon, normalized as uu = 2MN. Inserting
Eq. (19) into Eq. (18) and defining gnn: via the interaction Lagrangian density

L= -gNN~7 uua , (20)
we obtain for the hadronic part
_ 1A 12 g+ Mo g+ Mn
q2 - NTqQ2 - (€5

In addition, there are contributions coming from the excitations to higher nucleon states which are written as

= A qg-li I\I\{Ilplll INN*o- (%-I: I}\/l/ll\’l‘i ) (22)
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as well as contributions comin? from the intermediate states due to a-n scattering, i.e. the continuum contributions.
The term that corresponds to the excitations to higher nucleon states also has a pole at the nucleon mass, but a single
pole instead of a double one like in Eq. (21). This single-pole term is not “damped” after the Borel transformation
and should be included in the calculations. . -
Finally, there is another contribution that comes from the response of the continuum to the external field, given by

¢ ~é$_°qk2 S(s-so)ds, (23)

where a° is the continuum threshold, Aa° is the response of the continuum threshold to the external field, and b(s)
IS atfl[13[18ct|on that is calculated from the OPE. When Aa® is large, this term should also be included in the hadronic
art [38].

: The QCD sum rules are obtained by matching the OPE side with the hadronic side and applying the Borel
transformation. The resulting sum rules are:

~M4aqe0+ \xM2a2L49- » m2agL~1427- x +xg)~ a2L ~
= 9NN, + Bq” NoASg M2 , (24)
7

g7 g7 29
and

2mse2L-4ls+y M2a2L49 + 2X aqM 6E x - xg m\agM 4EOL - 14/2r

-bMA4EOL-4/9+ x M 2aq

= -m I—MZ)% gNNa+B1r +~aqslA M 29(’\ - N2, (25)
aq aq gq

\]gvhttere m is the Borel mass and we have defined xn = 32n4XN. The continuum contributions are included by the
actors

E° = 1 e-s0/M2 ,

e s l-e-w (I4J]),

* - +/N + <»>

where a° are the continuum thresholds with i = 1,g In the sum rules above, we have included the single-pole
contributions with the factors si. The third terms on the right-hand side (RHS) of Egs. (24) and (25) denote the
contributions that are explained in Eq. (23). These terms are suppressed by the factor e-(s>-mny/m as compared to
the single-pole terms. We have incorporated the effects of the anomalous dimensions of the various operators through
the factor L = in(M2/hQob V In(P2/AQCD).

1. ANALYSIS OF THE SUM RULES AND DISCUSSION

In this Section we analyze the sum rules derived in the previous Section in order to determine the value of gnn.
We observe that the sum’rule in Eq. (24) is more stable than the other sum rule in Eq. (25), so we use only this sum
rule for the numerical analysis. Such a comparison and conclusion have been made about these sum rules also in some
earlier works [24, 25]. .

In order to calculate gNN7, we need to know the values of the scalar susceptibilities x and xG. The value of the
susceptibility x can be calculated by using the two-point function [24]

T(p2) = i f daxeipx0 T [u(X)u(x) + dexdex), u(0)u(0) + d(0)d(0)] 0", (27)
via the relation

x(00) = (2



The two-point function in Eq. (27) at p2= 0 has been calculated in chiral perturbation theory [39] with the result

K= o d st 3h - F) #)

where fn = 93 MeV is the pion decay constant and 12and 12 are low-gnergy constants appearing in the effective
chiral Lagrangian. The values of these Tow-energy constants have been estimated previously in various works (see e.g.
Ref. [40] for a IEVIEW?_. A recent analysis of n-n scattering gives 12= -1.9 £ 0.2 and 12= 5.25 0.04 [40], Wh_m%
is consistent with earlier determinations, but with smaller uncertainties. Using these values of 11and 12 and taking
the quark condensate aqg= 0.51 £ 0.03 GeV3, we find x = -10 £ 1 GeV-1. The value of the susceptibility xa Is less
certain. Therefore, we allow xc to vary in a wider range. We also adopt b= 4.7 x 10-1 GeV4, xn = 2.1 GeV§,
and nr2= 0.8 GeV2 [119, 41]. We take mn = 0.94 GeV, the renormalization scale ~ = 0.5 GeV, and the QCD scale
parameter AqCD =0.1 GeV. It is relevant to Fomt out that the choice of the two-point function in Eq. (27) does not
Imply a theoretical prejudice about the structure of the scalar mesons. What is calculated is just the susceptibility
pertaining to the response of the quark condensates (qq) to the scalar qq field, as shown in Eq. (9).
To proceed to the numerical analysis, we arrange the RHS of Eq. (24) in the form

f(M2) = Aqt BqMm 2+ cqM2L -4/9e(MN-50)/M2 , (30)
and fit the left-hand side (LHS) to £ (m2). Here we have defined
Aq = ~ﬁMJ\Igl\lNa,
Bg Bq
9
_ K
4w H o

In Fig. 2, we present the Borel mass dependence of the LHS and the RHS of Eq. (24) for s> = 2.3 and xa = x = -10
GeV-1. We choose the Borel window 0.8 GeV2 < m2< 14 GeV2 which is commonly identified as the fiducial region
for the nucleon mass sum rules [19]. It is seen that the LHS curve (solid) overlies the RHS curve (dashed). In order to
estimate the contributions that come from the excited nucleon states and the response of the continuum threshold, we
Blot each term on the RHS individually. We observe that the single-pole terms Fdotted) give very small contribution,

ut the response of the continuum threshold (dot-dashed) is quite sizable. Nevertheless, the ‘summation of these
curves with the line of the double-pole term (small-dashed) gives a stable sum rule. .

In Fig. 3, we plot the Borel mass dependence of the four terms on the LHS of Eq. (24) separately, together with
their summation for s> = 2.3 GeV2and xa = x = -10 GeV-1. This helps us to compare the contributions of different
operators on the OPE side. Here o 1denotes the first term, o2 denotes the second term, and so on. We observe that
o1and osare small, o4is sizable, and o2 s large. The term o4 contributes with different sign with respect to o1
and o3, and so tends to cancel the latter. Therefore gnnz is mainly determined by o2on the LHS.
~In order to see the sensitivity of the coupling constant on the continuum threshold and the susceptibility x, we plot
in Fig. 4 the dependence of gnn7/7g. On x for three different values s = 2.0, 2.3, and 2.5 GeV2, and taking x = xG.
One Sees that gnnz changes by approximately 8% in the considered region of the suscePt|b|I|t¥_ X. The value of gnnz
|sn0tverﬁ sensitive to a change in's°, which gives an uncertainty of approximately 6% to the final value. Taking into
account the uncertainty in x, s°, and ag, the predicted value for gnnz/g. of the sum rule in Eq. (24) reads

gNNs /g7 = 391 10, (32)
In a similar way, one can calculate the other two terms on the RHS of Eq. (24) as:

Bq = -0.2% 12 GeVs,
ca= -1.9+29 GeVs, (33)

As noted above, the value of the susceptibility xa is less certain than the value of x. If we let xa change in a wider
ran1ge, saY. 6 GeV-1 < —xa < 14 GeV-1, this brings an additional 15% uncertainty to the value quoted in Eq. (32).

he ratio in Eq. (32) is in aqreement with the naive quark model, which gives gnn- /g = 3 based on counting the
u- and the a-quarks in the nucleon. (ldeal mixing in the scalar sector is assumed above, that is, the sigma meson is
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taken without a strange-quark content.) Another estimate can be made from the ratio of pion-nucleon to pion-quark
coupling constant, gnnn/gK. Since the a meson is the chiral partner of the pion [8], one expects

gNN7/gg = gNNn/gq . (34)
Using the Goldberger-Treiman relation for both the pion-nucleon and the pion-constituent quark couplings,

QNNit — 9#5;‘[}‘ :
(35)

Jn

where mqis the mass of the constituent quark, g and ge are the nucleon and the quark axial couplings, respectively,
one obtains [42]

INN-K _ 5 Mjy
o 3Img’
With a constituent-quark mass of 340 MeV g42}, Eq. (36) yields gnnnsgd = 4.6. Using Eq. (34) we find that this
agrees nicely with the QCDSR result in Eq. (32).

To determine gnnz , One next has to assume some value for the quark-a coupling constant gz Adopting the value
g7 = 3.7 as estimated from the sigma model [43], we obtain

gNN7 = 1441 37, (37)

The cqulplmg constant in Eq. (37) is defined at t = 0, i.e. gnN7 = gNN7(e = 0). As stressed above, also in NN
potential models the heavy-meson coulollng constants are determined at ¢« = 0. The (large) value of gnnz obtained
In Eq. (137) is in agreement with the value gnnz = 16.9 from the Nijmegen soft-core NN potential model [1], obtained
from a fit to the NN scattering data.

IV. CONCLUSION

We have calculated the cqupllng_constant gnN; 0f the isoscalar-scalar meson, which plays a significant role in OBE
models of the NN and YN interactions, to the nucleon, using the external-field QCDSR method. Our main result is
the ratio gnN7/gq in EQ. (32) which is determined purely from QCDSR. The value of gnnz IS dependent on grg the
value of which we use as estimated in the sigma model. "The obtained value of gnnz s in agreement with the?arge
value found in OBE models. We have also computed the contributions that come from the excited nucleon states and
the resPonse of the continuum threshold to the external field. We observe that while the single-pole contributions are
small, the response of the continuum threshold is sizable. We plan to extend the external-field QCDSR method to
the hyperons and the comglete scalar-meson nonet, in order to address the su (3)-flavor structure of the scalar-meson
coupling constants to the baryon octet [44]
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FIG. L The diagrams that were used to calculate the Wilson coefficients of the correlation functions n| and n®. The solid,
wavy, and the dashed lines represent the quark, gluon, and the external scalar field, respectively.
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FIG. 2 (Color online) The Borel mass dependence of LHS and the fitted RHS of Eq. (24) for s0 = 2.3 GeV2and xg = X= -10
GeV-1. We also present the terms on the RHS individually. Note that the LHS curve (Solid) overlies the RHS curve (dashed).

FIG. 3. (Color online) The four terms on the LHS of E
GeV2and xG= X=-10 GeV-1. Here O1 denotes the

qfirg

M2 (GeV2)

24) individually, together with the summation of them for s0 = 2.3
t term, 02 denotes the second term, and so on.
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FIG. 4 (Color online) The dependence of QNNg/Qq on the susceptibility x for three different values of s0 = 2.0, 2.3, and 2.5
GeV2; here we take x = XG.



