40 research outputs found
Model selection for spectro-polarimetric inversions
Inferring magnetic and thermodynamic information from spectropolarimetric
observations relies on the assumption of a parameterized model atmosphere whose
parameters are tuned by comparison with observations. Often, the choice of the
underlying atmospheric model is based on subjective reasons. In other cases,
complex models are chosen based on objective reasons (for instance, the
necessity to explain asymmetries in the Stokes profiles) but it is not clear
what degree of complexity is needed. The lack of an objective way of comparing
models has, sometimes, led to opposing views of the solar magnetism because the
inferred physical scenarios are essentially different. We present the first
quantitative model comparison based on the computation of the Bayesian evidence
ratios for spectropolarimetric observations. Our results show that there is not
a single model appropriate for all profiles simultaneously. Data with moderate
signal-to-noise ratios favor models without gradients along the line-of-sight.
If the observations shows clear circular and linear polarization signals above
the noise level, models with gradients along the line are preferred. As a
general rule, observations with large signal-to-noise ratios favor more complex
models. We demonstrate that the evidence ratios correlate well with simple
proxies. Therefore, we propose to calculate these proxies when carrying out
standard least-squares inversions to allow for model comparison in the future.Comment: 16 pages, 2 figures, 8 tables, accepted for publication in Ap
Time series of high resolution photospheric spectra in a quiet region of the Sun. I. Analysis of global and spatial variations of line parameters
A 50 min time series of one-dimensional slit-spectrograms, taken in quiet sun
at disk center, observed at the German Vacuum Tower Telescope (Observatorio del
Teide), was used to study the global and spatial variations of different line
parameters. In order to determine the vertical structure of the photosphere two
lines with well separated formation heights have been considered. The data have
been filtered of p-modes to isolate the pure convective phenomenon. From our
studies of global correlation coefficients and coherence and phase shift
analyzes between the several line parameters, the following results can be
reported. The convective velocity pattern preserves structures larger than 1.0"
up to the highest layers of the photosphere (~ 435 km). However, at these
layers, in the intensity pattern only structures larger than 2.0" are still
connected with those at the continuum level although showing inverted
brightness contrast. This confirms an inversion of temperature that we have
found at a height of ~140 km. A possible evidence of gravity waves superimposed
to the convective motions is derived from the phase shift analysis. We
interpret the behavior of the full width at half maximum and the equivalent
width as a function of the distance to the granular borders, as a consequence
of enhanced turbulence and/or strong velocity gradients in the intergranular
lanes.Comment: 16 pages, 15 figures, 5 tables; Astronomy & Astrophysics, Volume 408,
p.363-378, 200
Time series of high resolution photospheric spectra in a quiet region of the Sun. II. Analysis of the variation of physical quantities of granular structures
From the inversion of a time series of high resolution slit spectrograms
obtained from the quiet sun, the spatial and temporal distribution of the
thermodynamical quantities and the vertical flow velocity is derived as a
function of logarithmic optical depth and geometrical height. Spatial coherence
and phase shift analyzes between temperature and vertical velocity depict the
height variation of these physical quantities for structures of different size.
An average granular cell model is presented, showing the granule-intergranular
lane stratification of temperature, vertical velocity, gas pressure and density
as a function of logarithmic optical depth and geometrical height. Studies of a
specific small and a specific large granular cell complement these results. A
strong decay of the temperature fluctuations with increasing height together
with a less efficient penetration of smaller cells is revealed. The T -T
coherence at all granular scales is broken already at log tau =-1 or z~170 km.
At the layers beyond, an inversion of the temperature contrast is revealed.
Vertical velocities are in phase throughout the photosphere and penetrate into
the highest layers under study.Comment: 13 pages, 12 figures, 1 table; Astronomy & Astrophysics, Volume 441,
Issue 3, pp.1157-1169, 200
Multiwavelength studies of MHD waves in the solar chromosphere: An overview of recent results
The chromosphere is a thin layer of the solar atmosphere that bridges the
relatively cool photosphere and the intensely heated transition region and
corona. Compressible and incompressible waves propagating through the
chromosphere can supply significant amounts of energy to the interface region
and corona. In recent years an abundance of high-resolution observations from
state-of-the-art facilities have provided new and exciting ways of
disentangling the characteristics of oscillatory phenomena propagating through
the dynamic chromosphere. Coupled with rapid advancements in
magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly
investigate the role waves play in supplying energy to sustain chromospheric
and coronal heating. Here, we review the recent progress made in
characterising, categorising and interpreting oscillations manifesting in the
solar chromosphere, with an impetus placed on their intrinsic energetics.Comment: 48 pages, 25 figures, accepted into Space Science Review
Recommended from our members
The European Solar Telescope
The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems
The European Solar Telescope
The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l’Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems
An open-source, massively parallel code for non-LTE synthesis and inversion of spectral lines and Zeeman-induced Stokes profiles
With the advent of a new generation of solar telescopes and instrumentation, interpreting chromospheric observations (in particular, spectropolarimetry) requires new, suitable diagnostic tools. This paper describes a new code, NICOLE, that has been designed for Stokes non-LTE radiative transfer, for synthesis and inversion of spectral lines and Zeeman-induced polarization profiles, spanning a wide range of atmospheric heights from the photosphere to the chromosphere. The code features a number of unique features and capabilities and has been built from scratch with a powerful parallelization scheme that makes it suitable for application on massive datasets using large supercomputers. The source code is written entirely in Fortran 90/2003 and complies strictly with the ANSI standards to ensure maximum compatibility and portability. It is being publicly released, with the idea of facilitating future branching by other groups to augment its capabilities
An open-source, massively parallel code for non-LTE synthesis and inversion of spectral lines and Zeeman-induced Stokes profiles
With the advent of a new generation of solar telescopes and instrumentation,
the interpretation of chromospheric observations (in particular,
spectro-polarimetry) requires new, suitable diagnostic tools. This paper
describes a new code, NICOLE, that has been designed for Stokes non-LTE
radiative transfer, both for synthesis and inversion of spectral lines and
Zeeman-induced polarization profiles, spanning a wide range of atmospheric
heights, from the photosphere to the chromosphere. The code fosters a number of
unique features and capabilities and has been built from scratch with a
powerful parallelization scheme that makes it suitable for application on
massive datasets using large supercomputers. The source code is being publicly
released, with the idea of facilitating future branching by other groups to
augment its capabilities.Comment: Submitted to A&A. Note: replaced with new version because references
were missing in the original submissio