178 research outputs found
Improving the method of solar radiation durability determination of cable products
The authors suggest an extra physic-mechanical procedure to determine durability of cable goods to solar radiation exposure. The test check was carried out using the standard and the proposed procedures. The results of two tests were compared and analyzed. The use of the proposed technique allows improving the validity and reliability of the laboratory experiment conducted in a real production environment and exclude the low-quality cable items. The only disadvantage of the proposed technique is its labor intensiveness
Short-time dynamics and magnetic critical behavior of two-dimensional random-bond Potts model
The critical behavior in the short-time dynamics for the random-bond Potts
ferromagnet in two-dimensions is investigated by short-time dynamic Monte Carlo
simulations. The numerical calculations show that this dynamic approach can be
applied efficiently to study the scaling characteristic, which is used to
estimate the critical exponents theta, beta/nu and z for the quenched disorered
systems from the power-law behavior of the kth moments of magnetizations.Comment: 10 pages, 4 figures Soft Condensed Matte
Magnetic critical behavior of two-dimensional random-bond Potts ferromagnets in confined geometries
We present a numerical study of 2D random-bond Potts ferromagnets. The model
is studied both below and above the critical value which discriminates
between second and first-order transitions in the pure system. Two geometries
are considered, namely cylinders and square-shaped systems, and the critical
behavior is investigated through conformal invariance techniques which were
recently shown to be valid, even in the randomness-induced second-order phase
transition regime Q>4. In the cylinder geometry, connectivity transfer matrix
calculations provide a simple test to find the range of disorder amplitudes
which is characteristic of the disordered fixed point. The scaling dimensions
then follow from the exponential decay of correlations along the strip. Monte
Carlo simulations of spin systems on the other hand are generally performed on
systems of rectangular shape on the square lattice, but the data are then
perturbed by strong surface effects. The conformal mapping of a semi-infinite
system inside a square enables us to take into account boundary effects
explicitly and leads to an accurate determination of the scaling dimensions.
The techniques are applied to different values of Q in the range 3-64.Comment: LaTeX2e file with Revtex, revised versio
Evidence for softening of first-order transition in 3D by quenched disorder
We study by extensive Monte Carlo simulations the effect of random bond
dilution on the phase transition of the three-dimensional 4-state Potts model
which is known to exhibit a strong first-order transition in the pure case. The
phase diagram in the dilution-temperature plane is determined from the peaks of
the susceptibility for sufficiently large system sizes. In the strongly
disordered regime, numerical evidence for softening to a second-order
transition induced by randomness is given. Here a large-scale finite-size
scaling analysis, made difficult due to strong crossover effects presumably
caused by the percolation fixed point, is performed.Comment: LaTeX file with Revtex, 4 pages, 4 eps figure
Critical behavior of weakly-disordered anisotropic systems in two dimensions
The critical behavior of two-dimensional (2D) anisotropic systems with weak
quenched disorder described by the so-called generalized Ashkin-Teller model
(GATM) is studied. In the critical region this model is shown to be described
by a multifermion field theory similar to the Gross-Neveu model with a few
independent quartic coupling constants. Renormalization group calculations are
used to obtain the temperature dependence near the critical point of some
thermodynamic quantities and the large distance behavior of the two-spin
correlation function. The equation of state at criticality is also obtained in
this framework. We find that random models described by the GATM belong to the
same universality class as that of the two-dimensional Ising model. The
critical exponent of the correlation length for the 3- and 4-state
random-bond Potts models is also calculated in a 3-loop approximation. We show
that this exponent is given by an apparently convergent series in
(with the central charge of the Potts model) and
that the numerical values of are very close to that of the 2D Ising
model. This work therefore supports the conjecture (valid only approximately
for the 3- and 4-state Potts models) of a superuniversality for the 2D
disordered models with discrete symmetries.Comment: REVTeX, 24 pages, to appear in Phys.Rev.
Fairy tale tourism: the architectural projection mapping of magically real and irreal festival lightscapes
This paper explores how established light festivals such as the Fête des Lumières in Lyon and Lumiere in Durham were first conceived by Robert-Houdin as illusory illuminations in the Loire in the 1950s. The research investigates the concept of spectacles as inversions of reality; re-situating light works within authenticity theory by exploring their manipulation of magical reality and irreality. The research uses the authors’ experience of event design to assess different interactions of light with the tri-dimensional architectural canvas, suggesting three classifications of animated projection mapping events: architecturally passive, architecturally physically active and architecturally metaphysically active. Each category has implications for how spectators perceive these installations. Architecturally passive events may use fairy tale content, evoking atavistic and affective responses, the ‘skinning’ of buildings with magical reality is designed to evoke perceptual duality, and the wobbling unfolding of irreality may ultimately create a state of ‘illuminated flow.
Nanotube Action between Human Mesothelial Cells Reveals Novel Aspects of Inflammatory Responses
A well-known role of human peritoneal mesothelial cells (HPMCs), the resident cells of the peritoneal cavity, is the generation of an immune response during peritonitis by activation of T-cells via antigen presentation. Recent findings have shown that intercellular nanotubes (NTs) mediate functional connectivity between various cell types including immune cells - such as T-cells, natural killer (NK) cells or macrophages - by facilitating a spectrum of long range cell-cell interactions. Although of medical interest, the relevance of NT-related findings for human medical conditions and treatment, e.g. in relation to inflammatory processes, remains elusive, particularly due to a lack of appropriate in vivo data. Here, we show for the first time that primary cultures of patient derived HPMCs are functionally connected via membranous nanotubes. NT formation appears to be actin cytoskeleton dependent, mediated by the action of filopodia. Importantly, significant variances in NT numbers between different donors as a consequence of pathophysiological alterations were observable. Furthermore, we show that TNF-α induces nanotube formation and demonstrate a strong correlation of NT connectivity in accordance with the cellular cholesterol level and distribution, pointing to a complex involvement of NTs in inflammatory processes with potential impact for clinical treatment
A systematic review of patient and health system characteristics associated with late referral in chronic kidney disease
<p>Abstract</p> <p>Background</p> <p>To identify patient and health system characteristics associated with late referral of patients with chronic kidney disease to nephrologists.</p> <p>Methods</p> <p>MEDLINE, CENTRAL, and CINAHL were searched using the appropriate MESH terms in March 2007. Two reviewers individually and in duplicate reviewed the abstracts of 256 articles and selected 18 observational studies for inclusion. The reasons for late referral were categorized into patient or health system characteristics. Data extraction and content appraisal were done using a prespecified protocol.</p> <p>Results</p> <p>Older age, the existence of multiple comorbidities, race other than Caucasian, lack of insurance, lower socioeconomic status and educational levels were patient characteristics associated with late referral of patients with chronic kidney disease. Lack of referring physician knowledge about the appropriate timing of referral, absence of communication between referring physicians and nephrologists, and dialysis care delivered at tertiary medical centers were health system characteristics associated with late referral of patients with chronic kidney disease. Most studies identified multiple factors associated with late referral, although the relative importance and the combined effect of these factors were not systematically evaluated.</p> <p>Conclusion</p> <p>A combination of patient and health system characteristics is associated with late referral of patients with chronic kidney disease. Overall, being older, belonging to a minority group, being less educated, being uninsured, suffering from multiple comorbidities, and the lack of communication between primary care physicians and nephrologists contribute to late referral of patients with chronic kidney disease. Both primary care physicians and nephrologists need to engage in multisectoral collaborative efforts that ensure patient education and enhance physician awareness to improve the care of patients with chronic kidney disease.</p
Aspirin induces cell death and caspase-dependent phosphatidylserine externalization in HT-29 human colon adenocarcinoma cells
The induction of cell death by aspirin was analysed in HT-29 colon carcinoma cells. Aspirin induced two hallmarks of apoptosis: nuclear chromatin condensation and increase in phosphatidylserine externalization. However, aspirin did not induce either oligonucleosomal fragmentation of DNA, decrease in DNA content or nuclear fragmentation. The effect of aspirin on Annexin V binding was inhibited by the caspase inhibitor Z-VAD.fmk, indicating the involvement of caspases in the apoptotic action of aspirin. However, aspirin did not induce proteolysis of PARP, suggesting that aspirin does not increase nuclear caspase 3-like activity in HT-29 cells. This finding may be related with the ‘atypical’ features of aspirin-induced apoptosis in HT-29 cells. © 1999 Cancer Research Campaig
Three-Dimensional, Tomographic Super-Resolution Fluorescence Imaging of Serially Sectioned Thick Samples
Three-dimensional fluorescence imaging of thick tissue samples with near-molecular resolution remains a fundamental challenge in the life sciences. To tackle this, we developed tomoSTORM, an approach combining single-molecule localization-based super-resolution microscopy with array tomography of structurally intact brain tissue. Consecutive sections organized in a ribbon were serially imaged with a lateral resolution of 28 nm and an axial resolution of 40 nm in tissue volumes of up to 50 µm×50 µm×2.5 µm. Using targeted expression of membrane bound (m)GFP and immunohistochemistry at the calyx of Held, a model synapse for central glutamatergic neurotransmission, we delineated the course of the membrane and fine-structure of mitochondria. This method allows multiplexed super-resolution imaging in large tissue volumes with a resolution three orders of magnitude better than confocal microscopy
- …