786 research outputs found

    Spatial variability of ocean waves, from in-situ measurements

    Get PDF
    notes: Detailed statistical analysis of unique concurrent wave measurements Physical processes distort natural homogeneity of waves at typical wave energy site Physical processes can have a significant effect on wave energy assessments Differences greatest for low freq’s, 8.6% difference in Mean incident wave power Short-term spatial variability was largest for high-frequencies, and parameter Tm02publication-status: Publishedtypes: ArticleThis paper describes the analysis of the spatial properties of ocean waves using measurements from an array of four directional wave buoys installed in a square formation, with side 500 m, in the Celtic Sea, UK. Wave measurements in this area have been installed to support resource assessment and design for wave energy devices at the Wave Hub site off the North Cornwall coast. This unique deployment of multiple directional sensors provides high quality direct measurements of the spatial properties of the wave field. Spectral parameters measured simultaneously by all four buoys within the array are compared and it is demonstrated that wave conditions cannot be considered stationary across the measurement area. Differences in the measured wave fields were observed primarily in the low frequencies and are observed to be of a level sufficient to impact the assessment of site characteristics. Theoretical estimations of refraction and bottom friction indicate that these physical processes contribute to the observed measurements. The results demonstrate the potential effect of spatial variability in wave fields on the monitoring of wave energy sites, and highlight the requirement for accurate evaluation of physical processes

    Slip vs viscoelasticity in dewetting thin films

    Get PDF
    Ultrathin polymer films on non-wettable substrates display dynamic features which have been attributed to either viscoelastic or slip effects. Here we show that in the weak and strong slip regime effects of viscoelastic relaxation are either absent or not distinguishable from slip effects. Strong-slip modifies the fastest unstable mode in a rupturing thin film, which questions the standard approach to reconstruct the effective interface potential from dewetting experiments.Comment: 4 pages, submitted to Eur. Phys. J.

    Spectral Bandwidth and WEC Performance Assessment

    Get PDF
    This paper investigates the dependency of wave energy conversion on the spectral bandwidth of sea-states. To this aim, the performance of an axisymmetrical Wave Energy Converter is assessed in the frequency domain by using a stochastic model in two far different wave climates (Portugal and North Sea) both represented by more than 23000 energy spectral densities obtained from measurements. The correlation between the performance and various bandwidth parameters found in the literature is observed. Then, refined methods for predicting the long-term converted wave energy based on wave statistics including spectral bandwidth are compared to more common procedures and conclusions are drawn

    Characterization of actin genes in Bonamia ostreae and their application to phylogeny of the Haplosporidia

    Get PDF
    Bonamia ostreae is a protozoan parasite that infects the European flat oyster Ostrea edulis, causing systemic infections and resulting in massive mortalities in populations of this valuable bivalve species. In this work, we have characterized B. ostreae actin genes and used their sequences for a phylogenetic analysis. Design of different primer sets was necessary to amplify the central coding region of actin genes of B. ostreae. Characterization of the sequences and their amplification in different samples demonstrated the presence of 2 intragenomic actin genes in B. ostreae, without any intron. The phylogenetic analysis placed B. ostreae in a clade with Minchinia tapetis, Minchinia teredinis and Haplosporidium costale as its closest relatives, and demonstrated that the paralogous actin genes found in Bonamia resulted from a duplication of the original actin gene after the Bonamia origi

    Dewetting of Glassy Polymer Films

    Full text link
    Dynamics and morphology of hole growth in a film of power hardening viscoplastic solid (yield stress ~ [strain-rate]^n) is investigated. At short-times the growth is exponential and depends on the initial hole size. At long-times, for n > 1/3, the growth is exponential with a different exponent. However, for n < 1/3, the hole growth slows; the hole radius approaches an asymptotic value as time tends to infinity. The rim shape is highly asymmetric, the height of which has a power law dependence on the hole radius (exponent close to unity for 0.25 < n < 0.4). The above results explain recent intriguing experiments of Reiter, Phys. Rev. Lett, 87, 186101 (2001).Comment: 4 pages, 5 figures, RevTe

    The encapsulation of DNA molecules within biomimetic lipid nanocapsules

    Get PDF
    Most of DNA synthetic complexes result from the self-assembly of DNA molecules with cationic lipids or polymers in an aqueous controlled medium. However, injection of such self-assembled complexes in medium like blood that differ from that of their formulation leads to strong instability. Therefore, DNA vectors that have physico-chemical properties and structural organisation that will not be sensitive to a completely different medium in terms of ionic and protein composition are actively sought. To this end, the goal here was to discover and optimize a nanostructured system where DNA molecules would be encapsulated in nanocapsules consisting in an oily core and a shell covered by PEG stretches obtained through a nanoemulsion process in the absence of organic solvent. This encapsulation form of DNA molecules would prevent interactions with external hostile biological fluid. The results show the entrapment of lipoplexes into lipid nanocapsules, leading to the formation of neutral 110 nm-DNA nanocapsules. They were weakly removed by the immune system, displaying an increased blood half-life, and improved carcinoma cell transfection, in comparison to the parent lipoplexes. Our results demonstrate that the fabrication of nanocapsules encapsulating hydrophilic DNA in an oily core that meet criteria for blood injection is possible

    NMR diffusometry data sampling optimization for mixture analysis

    Get PDF
    NMR diffusometry is a powerful but challenging method to analyze complex mixture. Each component diffuses differently, from the faster small species to the slower large species, corresponding to different signal attenuation. However, the method is highly sensitive to the quality of the acquired data and the performance of the processing used to resolve multiexponential signals influences. Adapting the signal decay sampling to the mixture composition is one way to improve the precision of the measure. In this work, we propose a prediction tool, based on the calculation of the Cramér-Rao lower bound to minimize the variance of diffusion coefficient estimation in order to determine the optimal number of diffusion gradient steps, the best diffusion gradient sampling (among linear, exponential, quadratic and sigmoidal ones) and the optimal maximum diffusion factor. The tool was validated experimentally on a unimer/micelle solution of sodium dodecyl sulfate and on Caelyx®, a commercial liposomal preparation containing a mixture of pegylated-liposomes and sucrose
    corecore