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Abstract 
This paper investigates the dependency of wave energy 

conversion on the spectral bandwidth of sea-states. To this 
aim, the performance of an axisymmetrical Wave Energy 
Converter is assessed in the frequency domain by using a 
stochastic model in two far different wave climates 
(Portugal and North Sea) both represented by more than 
23000 energy spectral densities obtained from 
measurements. The correlation between the performance 
and various bandwidth parameters found in the literature is 
observed. Then, refined methods for predicting the long-
term converted wave energy based on wave statistics 
including spectral bandwidth are compared to more 
common procedures and conclusions are drawn. 
 
Keywords: Wave Energy Converter, Performance 
Assessment, Spectral Bandwidth, Stochastic Modelling. 
 
Introduction 

Assessing the performance of a Wave Energy Converter 
(WEC) – that is, predicting the effective amount of energy 
converted from the incident wave field over certain period 
of time in nominal operation conditions – necessarily 
requires a precise knowledge of the local wave climate. The 
developers, indeed, need to optimize their devices in order 
to fit them to actual wave conditions at the envisioned zone 
of deployment. The main wave characteristics are 
commonly given in terms wave height, period, direction of 
propagation and power. Then, representative sea-states of 
the local wave climate (energy spectra E(f)) are modelled 
using these parameters and input in numerical models or in 
wave-tank for experimental model testing. By multiplying 
the number of occurrences of such sea-states observed at 
sea to the corresponding extracted power output from the 
models, an estimation of the converted wave energy over a 
given period of time is easily derived. To date, most of 
WEC performance predictions are based on this procedure, 
using unimodal Pierson-Moskowitz / Bretschneider or 
JONSWAP [1] energy spectra to describe the 
representative sea-states. 

Observations of spectra (frequency domain) obtained 
from measurements let suggest however that such models 
are not always realistic. Often, sea-states are not unimodal 
since they are the result of various wave systems 

(superimposed remotely originated swells and local wind-
seas) leading to complex multimodal spectral shapes. 
Moreover, in case they can be considered as unimodal, the 
observed spectra may exhibit a wide variety of shape 
patterns. The missing information for an extensive sea-state 
characterisation is then the spectral bandwidth. 
Accordingly, the common prediction methods using shape-
fixed analytical representative spectra may lead to some 
discrepancies with reality since the shape variations are 
never taken into account. 

A single spectral parameter can certainly not distinguish 
whether the energy spectrum has one, two or more peaks. 
This identification would be anyway highly dependent on 
the accuracy of the spectral estimates, which in turn 
depends on the numerical procedures that have been 
performed beforehand to compute them. However, this 
information is not always useful for WEC designers, whose 
main concern is to tune their device to the most energetic 
frequency band of the wave field. If wave directionality 
does not significantly influence the device’s response 
(which is the case for an axisymmetrical device) three wave 
parameters may therefore suffice to characterise the 
incoming wave energy in the frequency domain and 
characterise in turn the device performance: the mean wave 
height, period and spectral bandwidth.  

A review of various spectral bandwidth parameters 
drawn from literature is first presented in this paper. Then a 
numerical code that stochastically models the wave energy 
conversion operated by an axissymetrical converter (IPS 
Buoy) in the frequency domain is used to compute the 
extracted wave power from a given energy spectrum E(f), 
by four linear Power Take-Off (PTO) configurations. Two 
large samples of spectral measurements are input to the 
model, the first one being mostly related to North-Atlantic 
swell-dominated wave conditions (western coast of 
Portugal) and the other one to wind-waves (North Sea), 
which each include more than 23000 spectra. Each sea-
state (spectrum) is characterised by its significant wave 
height Hm0, its mean energy period T-10 and the set of 
bandwidth parameters referred to above. The observed 
results on both wave climates are shown and some relevant 
conclusions for wave energy conversion purposes are 
formulated.  

Lastly, refined methods for assessing the annual 
performance of the device involving in the wave statistics a 
spectral bandwidth parameter as a third degree of freedom 
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are implemented and compared to the classical one as well 
as to the exact values. Conclusions are then drawn for 
future works. 

 
1    Sea-States Spectral Characterisation 

A sea-state is defined as stationary wave conditions 
observed at a given point of the sea. The most basic data 
used to describe the sea-states are generally the significant 
wave height, mean period and direction of waves. 
However, a complete description of the sea-state in the 
frequency domain is possible by computing the energy 
spectrum (or spectral density) E(f) from in situ 
measurements or wave predictive models, which gives the 
distribution of energy against frequency. Such data is 
widely available today and is sufficient to characterise sea-
states when no wave directional information is needed.  

The spectral moments at order n of the spectrum are 
computed as 
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It is then possible to derive wave spectral parameters, such 
as the significant wave height 
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which is related to the wave energy level through the sea-
surface elevation variance m0, and the mean energy period  
 

0

1
10 m

mT −
− =                                                                           (3) 

 
The wave power is computed as 
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where cg denotes the wave group velocity, which depends 
on the water depth h (see e.g. [2] for its computation), ρ the 
sea water density (= 1025kg/m3) and g the gravitational 
acceleration. Under infinite water depth assumptions (i.e. 
kh>>1 with k the wave number of the harmonic f) the wave 
power level simplifies to 
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which is commonly expressed in kW/m of wave front if 
Hm0 and T-10 are respectively expressed in meters and 
seconds.  

To characterise the spectral bandwidth of a sea-state, 
several parameters are presented hereafter. Some of them 
were used to deal with wave groupiness as this 
phenomenon is known to be somehow linked to the spectral 
narrowness (the narrower the spectrum, the more grouped 

the waves).  
Longuet-Higgins [3] introduced the narrowness 

parameter υ to study wave groups in narrow-banded 
random sea-states  
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As his theory was limited to the consideration of narrow 
spectra, he recommended imposing systematically low and 
high cut-off frequencies for its computation. However, it is 
here deliberately performed over the whole frequency band 
as the measured sea-states were not necessarily narrow-
banded. For the sake of clarity this parameter is denoted by 
ε2 in the following.  

For wave energy resource assessment, Mollison [4] 
proposed the use of parameter ε0 defined as  
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which is the relative standard deviation of the 
corresponding period spectrum. Smith [5] in turn used an 
intermediate bandwidth parameter ε1, as 
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The peakedness factor  
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was introduced by Goda [6] and aims at characterising the 
sharpness of the spectral peak. Obviously, such a factor 
makes full sense for monopeaked spectra. Spectra whose 
Qp ~ 2 correspond to wind-waves whereas Qp > 3 – 4 rather 
characterises swells.  

The wave height correlation parameter κ has been 
proposed by Battjes and Van Vledder [7] to study wave 
group characteristics. The correlation between two 
successive wave heights is logically related to the 
groupiness of waves indeed. It is calculated as 
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where the time-lag τ is usually taken equal to the mean zero 
up-crossing wave period T02 = √(m0/m2).  

Finally, a last spectral bandwidth parameter BBw 
[Prevosto, personal communication] is also included in this 
study, as 
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By construction, this parameter has the particularity of not 
depending on the position of the spectrum in frequency, 
contrary to the previous ones. 

Independently of their original use, all of these 
parameters are seen here as spectral shape or bandwidth 
factors, that is, the third missing degree of freedom for a 
comprehensive characterisation of sea-states. In the 
following sections, they are computed on real ocean energy 
spectra together with Hm0 and T-10. 
 
2     Wave Data 

Two western European different wave climates are used 
in this study (Fig. 1). They were obtained from long time-
series of energy spectra calculated from 3-hourly buoy 
measurements. The first one is the swell-dominated climate 
off Portuguese western coast (Figueira da Foz, “FF”). The 
measurements were made at 40º13’33”N, 09º06’00”W by 
Wavec and Waverider buoys over nearly thirteen years 
(1981-1994) by the Portuguese Hydrographical Institute 
(Instituto Hidrográfico), the number of spectra totalling ca. 
26500. The second one refers to the North Sea prevailing 
wind-waves conditions off the Dutch coasts (“K13”), at 
53º12’17”N, 03º03’10”E. About 23300 measurements by 
Wavec buoys from 1993 to 2002 were provided by the 
Dutch National Institute for Marine and Coastal 
Management (Rijkswaterstaat). Deep water conditions can 
be assumed at FF as the water depth is ~90m. At K13 
where the water depth is ~30m finite water depth 
assumptions must be adopted. 
 

 
 
Figure 1: Buoy measurement sites; North 
Atlantic/Portugal (FF) and North Sea/Netherlands 
(K13). 
 

The buoys suffered sporadic technical difficulties that 
led to data failures. Half-hour measurements were made 
during extreme sea-states (Hm0 > 5m). However, the 
duration of both measurements campaigns is quite long (9 
years min.), which enables to consider the available sets of 
spectral data as representative samples.  

For the purposes of the study presented below, only the 
mostly observed sea-states with T-10 ∈ [5s;15s] at FF and  

T-10 ∈ [3s;10s] at K13 were kept, which slightly reduced 
the samples (to 25300 and 23000 spectra respectively). 

Spectral sub-samples were formed by selecting spectra 
according to their mean energy period T-10, resulting in 21 
sub-samples with T-10 = {5s, 5.5s, … , 14.5s, 15s} for FF, 
and similarly 13 with T-10 = {3.5s, 4s, … , 9s, 9.5s} for 
K13, allowing a 2% margin on T-10. Each spectral sub-
sample never contained less than 50 elements. 

The unique criterion of selection to build up these sub-
samples is based on wave period T-10. The justification of 
this is addressed in the next sections. 

 
3    IPS Buoy WEC Stochastic Model 

Different devices have been proposed to exploit the 
wave energy potential in the last years. Among them, the 
conception of the Wave Point Absorber, essentially based 
on an oscillating body, is one of the most promising 
technologies, particularly fit to offshore installations. In 
general, this kind of converters uses as PTO system either a 
hydraulic system or a directly driven linear electric 
generator. 

A single oscillating rigid body is one of the earliest 
concepts of wave-energy device, for which some 
fundamental theoretical results were firstly derived by 
Evans [8]. An insight of the main concepts, including 
optimal power absorption conditions, was developed and 
systematised by Falnes [9]. These authors showed, in 
particular, that the maximum energy that may be absorbed 
by a heaving axisymmetrical body equals the wave energy 
transported by the incident wave along a front width equal 
to the wavelength divided by 2π. This upper limit may be 
achieved using an optimum control (“reactive control”). 
 

 
 
Figure 2: Simplified scheme of an IPS buoy. 
 

Among the variety of devices that may be regarded as 
Point Absorbers, we consider here a system that consists of 
a fully submerged vertical open tube rigidly connected to a 



floating buoy and a piston able to slide inside it (see [10]). 
Tube and buoy constitute therefore a single body subject to 
wave induced motions while the piston motion is mainly 
dominated by the water inertia inside the tube, providing in 
this way the desired reaction for the energy extraction. This 
conception, illustrated in Figure 2, is, in some way, similar 
to an IPS buoy, a device proposed and developed in the 
1980s, which later evolved into the AquaBuOYTM, a wave 
energy converter currently being developed by Finavera 
(www.finavera.com). 

In the following we assume linear water wave theory, 
incompressible, inviscid fluid and irrotational flow. If we 
also consider a linear PTO system (ideally composed of a 
linear damper and a linear spring term), we may apply a 
frequency domain analysis and generate a Power Transfer 
Function (PTF) dependent on the frequency for each pair of 
PTO coefficients.  

The assumption of a linear PTO allows us to perform a 
stochastic modelling in order to estimate the average power 
output corresponding to each sea-state, which will be 
characterized by its own energy spectrum. This method has 
been developed, for the case of the Oscillating Water 
Column, by Falcão and Rodrigues [11] and Falcão [12].  

Basically we assume that each sea-state may be 
represented by a stochastic ergodic process, considering the 
surface elevation as a stochastic input. We then assume that 
each degree of freedom of the system could be considered 
as a random variable of zero mean, which is related to the 
surface elevation by the means of a transfer function. 

In the present case, we consider two degrees of freedom, 
one (x) related to the buoy displacement and the other one 
(y) linked to the piston movement. We therefore consider 
the velocities as Gaussian distributions given by 
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where σ  indicates standard deviation. Since the 
instantaneous power is given by 
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(where CPTO is the PTO damper coefficient) and 
considering that the sum of two jointly Gaussian variables 
is itself a Gaussian variable (see [13]), if we denote by z the 
relative velocity variable 
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we may say that z(t) is itself a Gaussian random variable 
with zero mean. Then the transfer function for the relative 
velocity may be expressed in terms of the transfer functions 
of the velocities of the two bodies and therefore of the 
hydrodynamic and mass coefficients of the system. 
Denoting by h(t) the transfer function of z(t) and by η(t) the 
surface elevation, we have 
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in which the transfer function is possibly non-causal (see 
[9]). In the frequency domain we may write 
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where H(ω) is the Fourier Transform of h(t) and ω = 2πf is 
the circular frequency (in rad/s). The function H(ω) is 
given by 
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Here, Fx(ω) and Fy(ω) are the excitation force complex 
coefficients respectively for tube and piston, that may be 
obtained with the aid of a commercial BEM code 
(WAMIT), and the other terms (assuming the PTO 
coefficients CPTO and KPTO to be frequency-independent) 
are defined as 
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Here, for each term on the right-hand-side, the subscript 
refers to the body considered (i.e. x correspond to the buoy 
+ tube body, y to the piston and xy to cross-coupled terms) 
and m, A, B are respectively mass, added mass and 
radiation resistance terms. The term ρgSw represents the 
hydrostatic term due to the presence of a floating buoy (ρ is 
the water density, g the gravity acceleration and Sw is the 
buoy cross-sectional area defined by the undisturbed water 
free-surface). 

We find that the variance of z(t) is given by 
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where E(f) is the energy spectrum of the sea-state. Now 
following again Papoulis ([13]), we may find that the 
average power is given by 
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It follows from Eq. (21) and (22) that, considering the 
surface elevation as a stochastic input (represented by the 
spectrum E(f)), the PTF may be defined by 
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This means that the power average is given by the 

integral of the PTF times the spectrum considered. If we 
assume, for instance, a Dirac impulse centered on a certain 
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frequency fe as input, we obtain the same results that could 
be found by applying a frequency domain analysis and that 
would correspond to the average power produced at that 
frequency. 

For fixed device geometry, the PTF is only dependent 
on the values of the PTO coefficients, whose modification 
could imply different peak frequencies or shapes.  

In the following we assume a device composed by a 
cylindrical buoy of radius 5m and draft 2.5m, a tube of 5m 
internal radius, 5.5m external radius 5.5m and 10m high. 
The piston is a disc of 5m radius and 0.5m thickness. These 
dimensions do not result from an optimization procedure, a 
step that would be important in device development but 
beyond the scope of this study. 

Figure 3 shows four PTF for this particular geometry, 
plotted against the frequency, each one corresponding to a 
different PTO configuration (called IPS1, 2, 3 and 4). 
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PTO configurations (IPS1 to 4). 
 

To achieve the objective of our study and observe the 
sensitivity to different bandwidth parameters, we name here 
χP as the capture width defined by the ratio between the 
average absorbed power and the incident wave power Pw
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4    Sensitivity of Capture Width to 
Spectral Bandwidth 

The capture width χP of the converter has been defined 
in last section in such a way it is not influenced by the 
wave energy content (i.e. the variance m0). Thus, the only 
influent parameters following the characterisation we 
proposed are the energy period T-10 and the spectral 
bandwidth (characterising the shape of the spectrum). It is 
then interesting to observe the distribution of χP against T-10 
for each PTO configuration and each wave climate. This 
distribution over the energy period is obtained by 
considering the results output from the stochastic model for 

each spectral sub-sample, for which T-10 is fixed. Figures 
A1 to A8 (see end of paper) depict the average value of χP 
as well as its 90% confidence limits. The results obtained 
with Bretschneider spectra (defined in section 5) are also 
plotted. The same kind of patterns is observed in both wave 
climates when comparing each PTO configuration side-by-
side. The slight differences in the amplitude of χP between 
the two locations may be explained by the fact some device 
configurations are more appropriate to a location or to 
another (i.e. IPS3 for FF and IPS2 for K13), as well as the 
fact the wave power in finite water depth is larger than in 
deep water, which makes χP lower. These figures clearly 
suggest that the spectral shape has a non-negligible impact 
on capture width. In particular, large variations of χP are 
observed in both wave climates when T-10 lies in the 
response band of the device. This is due to the fact that 
when the spectrum matches the device’s pass-band, the 
spectral shape variations have much more influence in the 
integral of Eq. (21) than when they do not overlap 
completely. This implies that if a WEC is tuned to the sea-
state, its performance may be greatly correlated with the 
spectral shape (or bandwidth). This point is more 
specifically addressed in the following.  

When looking at the capture width obtained using 
Bretschneider spectra, an overestimation of χP is always 
noticed compared to the average value. This means that 
modelling sea-states with unimodal analytical spectra 
whose bandwidth is fixed (like a Bretschneider) when 
assessing the long-term performance assessment of a 
device may often result in very optimistic predictions. This 
issue is discussed more explicitly in next section. 
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In order to assess the ability of each bandwidth 
parameter in characterising the capture width when period 
T-10 is fixed, the distribution of χP against each parameter 
{ε0, ε1, ε2, Qp, κ, Bw} is plotted for each PTO configuration, 
for each spectral sub-sample of each location. Then, it is 
fitted with a quadratic law by least squares method. The 
coefficient of determination R2 of the trend is calculated 
and used as an indicator of the goodness of fit. If R2 is close 
to 1, this means that the scatter plot follows the quadratic 



trend well, or, in other words, that the capture width 
variations are well correlated to the bandwidth parameter’s 
ones. Conversely, if R2 is low, the points are too much 
scattered and no clear relationship linking the parameter to 
the capture width is observed. Figure 4 above gives the 
scatter plot of χP against parameter ε0 obtained for 
configuration IPS1 and energy spectra of FF sub-sample  
T-10 = 7s. In this precise case the points are nicely fitted by 
the quadratic trend and a high value of R2 is therefore found 
(~0.88). 

Figures A9 to A16 (see end of paper) show the 
variations of coefficient R2 against T-10 for each bandwidth 
parameter, PTO configuration and location. The average 
extracted power per period band is also plotted to indicate 
where the power production is the most significant (red 
spots). All the graphics have been set the same abscissas 
interval [3s;15s] in order to enable comparisons between 
both locations. To facilitate the interpretation of these 
results, we arbitrarily state that the correlation is good as 
soon as R2 > 0.70. Thus, by looking at the four device 
configurations it is clear that some bandwidth parameters 
lead to better results than others, namely ε0, ε1, and Bw. A 
good relationship with capture width is found in particular 
over intervals of T-10 that match the pass-band of the 
devices (cf. Fig. 3). This can be observed at both locations 
as a fair correspondence appears between both sets of 
graphics in spite of the climatologic differences. For 
example, parameter ε0 characterises capture width well for 
device configuration IPS1 over [5s;9s] at both FF and K13. 
Parameter κ, however, seems to perform better over 
intervals of periods that do not correspond to the 
converter’s pass-band and which are systematically higher. 
In Figure A9 indeed, R2 > 0.70 for κ when T-10 ∈ [12s;15s]. 
Another important point to emphasize is the link between 
the interval of relevance of the parameters and the device’s 
PTF broadness (or peakedness). Two extreme cases are 
exemplified through configurations IPS3 and IPS4. IPS3 
refers to a very narrow-banded system with large response 
amplitude at resonance within [8s;11s], whereas IPS4 has a 
very low and wide pass-band that does not privilege any 
particular period within [4s;14s]. Figures A13 and A14 
show that the parameters cannot characterise the capture 
width of device IPS3 over a wide interval of period. On the 
contrary, Figures A15 and A16 exhibit wide intervals of 
reliability, especially for parameters ε0, ε1, and Bw. The 
same properties can be also observed on configurations 
IPS1 and IPS2 as the first one of both corresponds to a 
broader PTF than the second one. Thus, it can be said that 
the broader the WEC’s transfer function, the more sensitive 
the performance (here, the capture width) to spectral 
bandwidth. A practical conclusion of this point is that if a 
WEC (with vertical axisymmetry) is tuned to the most 
energetic period of the sea-states and provided its PTFs are 
not too narrow, the output power can always be 
characterised using a bandwidth parameter such as ε0, ε1, or 
Bw.  

The use of parameters ε2, Qp and κ cannot be 
recommended as their respective performances are low, 
and/or highly dependent on the device configuration and 
the wave climate, as Figures A9 to A16 notably suggest. 

 
5    Long-Term Performance Prediction 
 An investigation is made about the refinement of long-
term WEC performance predictions by introducing spectral 
bandwidth in wave resource statistics. Indeed, comparing 
such results to actual values as well as those obtained by 
modelling the sea-states with analytical spectra is of 
particular interest. This is the objective of the present 
section, which deals with annual performance values in 
MWh. 

The amount of extracted wave energy over one year at a 
given location is estimated by computing the power output 
(in kW) of the WEC on each sea-state spectrum and 
multiplying it by the time factor (in operating hours) of 
occurrence of this particular sea-state (characterised by 
Hm0, T-10, …) within a whole year (that is, 365*24h = 
8760h). As the real spectra of a given climate observed 
along one year represent a large amount of data, when 
available, and in order to simplify the estimation procedure, 
wave resource statistics and spectral models are more 
preferably used, as scatter tables of joint mean wave height 
and period occurrences and representative Bretschneider or 
JONSWAP spectra for example. If the percentage of 
occurrence is given as η%, the time factor is therefore 
365*24*(η/100). In case the exact amount of converted 
energy has to be computed from a long-term sample of 
spectra (as here at FF and K13) then for each one of them 
η/100 = 1/Nsp where Nsp is the total number of spectra in the 
sample, assuming the recorded sea-state occurrences are 
regularly spaced in time (which is the case for a 
“homogeneous” sample). Following this procedure, the 
exact annual extracted wave energy by each device 
configuration is calculated at both locations. The whole 
samples of respectively ~25300 and ~23000 energy spectral 
densities for FF and K13 are input in the model to this aim. 
The results (in MWh) are denoted by Eex. Then, for each 
wave climate, an estimation based on Bretschneider spectra 
and scatter tables of joint (Hm0,T-10) occurrences is 
performed. The width of the Hm0 and T-10 bins is 0.5m and 
1s respectively, in order to work with a rather fine 
description of the wave climate. The partition of the rows 
and columns is crucial indeed, because the central Hm0 and 
T-10 values of the cell are used to model the representative 
spectrum. Thus, the finer the table, the better the 
estimation. This procedure is the most common to date for 
WEC developers and designers, and the Bretschneider (or 
Pierson-Moskowitz) spectrum one of the most popular. 
This figure is called EBret.  

A refined way of assessing annual WEC performance is 
proposed here by using 3D scatter tables, namely providing 
the (Hm0,T-10,λ) occurrences where λ ∈ {ε0, ε1, Bw}. Only 
parameters ε0, ε1, and BBw have been retained for this study 
in regard to the conclusions drawn from previous section. 
The same procedure as using 2D scatter tables and 
Bretschneider spectra is carried out, adding one dimension 
– the spectral width – to the tables and considering a  
3-parameter spectral model. These spectra (called here  
“Qp-spectra”) are a generalisation of the Bretschneider one, 
and can be expressed as  
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where α = 1 + 1/(2Qp) and Tp is the spectrum’s peak period, 
computed as 
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where Γ(.) denotes the Gamma function. Qp = 2 yields the 
Bretschneider spectrum. Thus, from the knowledge of Hm0, 
T-10 and Qp, a unimodal spectral shape can be obtained for 
which spectral shape is controlled. Figure 5 depicts an 
example of such spectra for various values of factor Qp, 
along with a typical JONSWAP 3.3 spectrum (for which 
Qp~3.145). 
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Figure 5: Plots of four Qp-spectra (Qp = 1, 2, 3.145 
and 5) and JONSWAP 3.3 spectrum; for all, Hm0 = 
2m and T-10 = 10s. 
 

In the previous section, the scatter plots of capture width 
χP against each bandwidth parameter were observed, and 
the results obtained using Qp-spectra were superimposed to 
the clouds of points (i.e. for a large range of Qp values, χP 
and the bandwidth parameters were computed on the 
theoretical spectra). A good agreement has been mostly 
found, so that the assumption that the Qp-spectra 
reasonably follow the same general trends has been made. 
An example is shown on Figure 6 for IPS4 at FF  
(T-10 = 7.5s) against parameter ε1. Although peakedness 
factor Qp is not regarded as a relevant parameter for real 
spectra, it is regarded here as a shape factor for analytical 
spectrum.  

Better estimations than EBret are expected for the annual 
converted wave energy by the device, since a refinement – 
the spectral bandwidth – has been introduced in the 
assessment procedure. 3D scatter tables are therefore built 
with the same Hm0 and T-10 partitions as previously. 
Parameters ε0 and ε1 are partitioned in 0.1-wide bins and Bw 
in 0.025-wide. In each cell, the central values of Hm0, T-10 
and λ parameterise the representative Qp-spectrum of the 
cell which is input in the model. The value of Qp that 

matches the central λ of the cell is found by dichotomy 
algorithm. The results obtained with parameters ε0, ε1 and 
Bw as third dimension of the sea-state description are 
respectively denoted by EEps0, EEps1 and EBw.  
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Figure 6: Scatter plot of capture width χP against ε1 
for T-10 = 7.5s and PTO configuration IPS4 from 
experimental data (FF) and analytical Qp-spectra. 
 

A last estimation method can be applied for FF thanks to 
the deep water assumptions, by considering the curves in 
Fig. A1 to A8. The central wave power Pw (Eq. (5)) is 
computed in each cell of the (Hm0,T-10) scatter table, and, 
assuming the independence of capture width on wave 
height, a semi-empirical power matrix is therefore easily 
obtained. The annual performance estimated by this way is 
denoted EKhiP. 

Tables 1 and 2 give the results of all these estimative 
procedures (in % of error with EEx given in MWh) obtained 
for the four PTO configurations at FF and K13. 
 

FF IPS1 IPS2 IPS3 IPS4 
EEx 251.4 156.4 266.6 193.1 
EBret 12.4% 5.2% 18.8% 4.8% 
EKhiP -2.4% -5.5% 0.9% -0.8% 
EEps0 5.8% 2.6% 10.7% 1.2% 
EEps1 6.7% 6.2% 9.7% 1.1% 
EBw 1.3% 5.9% 1.5% -2.6% 

Table 1: Performance predictions at FF  
(in % error against EEx in MWh/y) 

 

K13 IPS1 IPS2 IPS3 IPS4 
EEx 177.7 194.6 89.4 119.8 
EBret 1.4% -0.5% 26.4% 1.2% 
EEps0 -1.2% -4.5% 24.5% -1.4% 
EEps1 0.1% -0.1% 21.3% 0.8% 
EBw 9.0% 13.1% 9.8% 7.1% 

Table 2: Performance predictions at K13  
(in % error against EEx in MWh/y) 

 
A first look at these tables first allows justifying the fact 

configuration IPS2 is more appropriate to the wave climate 



at K13 (EEx). Then, confirming that the results of the 
narrow-banded configuration IPS3 cannot be satisfactorily 
predicted using spectral models since a substantial error is 
generally found (except 1.5% for EBw at FF). The only way 
of approaching the exact value with sufficient accuracy 
seems to be using the mean capture width χP obtained in 
realistic sea-states (0.9% for EKhiP at FF only). It also 
confirms that predictions EEps0 and EEps1 for the broad-
banded configuration IPS4 are quite precise at both 
locations (error < 2%). Parameter BBw yields more unstable 
results however (-2.6% at FF but 7.1% at K13). 

Predictions based on Bretschneider spectra at FF lead to 
systematic overestimated performance values EBret. The 
method is therefore shown to be inconsistent for North-
Atlantic locations such as the Portuguese coast. On the 
other hand, a nice accuracy is obtained at K13 with EBret, 
what clearly indicates that modelling North Sea sea-states 
by wind-waves spectra for assessing WEC performance is 
relevant. Even though – out of configuration IPS3 – EEps1 
and EEps0 are also good estimates of EEx, their computation 
(heavier than EBret) may be useless at K13. 
 
6    Conclusions  
 This study allowed observing the influence of spectral 
bandwidth of sea-states on the wave energy conversion 
operated by an axisymmetrical device equipped with a 
linear PTO, by considering several PTO configurations and 
two different wave climates. The results have shown that: 
 

1 – The performance (here, the capture width χP) is 
highly sensitive to spectral shape variations within the pass-
band of the device (Fig. A1 to A8); 

 
2 – The broader the Power Transfer Function, the more 

the performance can be characterised by a spectral 
bandwidth parameter as ε0, ε1, or Bw within the device’s 
response period interval (Fig. A9 to A16); 

 
3 – Modelling sea-states by shape-fixed analytical 

spectra like a Bretschneider for long-term WEC 
performance assessment makes sense in the North-Sea 
where wind-waves are mostly expected; however, this may 
result in very erroneous (and overestimated) predictions in 
swell-dominated oceanic areas such as the North-Atlantic 
Ocean; 

 
4 – The performance of narrow-banded WECs cannot be 

accurately assessed by considering analytical spectral 
shapes; estimator EKhiP may be much more efficient in this 
case (under deep water and linearity assumptions for the 
model); 
 

5 – If a WEC is able to tune to the most energetic period 
range of the sea-state, and provided the PTFs are not too 
narrow, the sensitivity to spectral bandwidth will be always 
ensured. In that case, estimators as EEps0 and EEps1 may 
result in very accurate long-term performance predictions 
(other specific shape-controlled analytical energy spectra 
may also be envisioned according to the location). 
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Figure A1: Distribution of χP against T-10 for IPS1 at 
FF; results for Bretschneider spectra. 

Figure A2: Distribution of χP against T-10 for IPS1 at 
K13; results for Bretschneider spectra. 
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Figure A3: Id. Fig. A1 for IPS2. 
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Figure A5: Id. Fig. A1 for IPS3. 
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Figure A7: Id. Fig. A1 for IPS4. 
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Figure A6: Id. Fig. A2 for IPS3. 
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Figure A8: Id. Fig. A2 for IPS4. 
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Figure A9: Variation of coefficient R2 against T-10 
for IPS1 at FF for each bandwidth parameter. 

Figure A10: Variation of coefficient R2 against T-10 
for IPS1 at K13 for each bandwidth parameter. 
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Figure A11: Id. Fig. A9 for IPS2. Figure A12: Id. Fig. A10 for IPS2. 
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Figure A13: Id. Fig. A9 for IPS3. Figure A14: Id. Fig. A10 for IPS3. 
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Figure A15: Id. Fig. A9 for IPS4. Figure A16: Id. Fig. A10 for IPS4. 

 


