692 research outputs found
Angular Power Spectrum Estimation of Cosmic Ray Anisotropies with Full or Partial Sky Coverage
We study the angular power spectrum estimate in order to search for large
scale anisotropies in the arrival directions distribution of the highest-energy
cosmic rays. We show that this estimate can be performed even in the case of
partial sky coverage and validated over the full sky under the assumption that
the observed fluctuations are statistically spatial stationary. If this
hypothesis - which can be tested directly on the data - is not satisfied, it
would prove, of course, that the cosmic ray sky is non isotropic but also that
the power spectrum is not an appropriate tool to represent its anisotropies,
whatever the sky coverage available. We apply the method to simulations of the
Pierre Auger Observatory, reconstructing an input power spectrum with the
Southern site only and with both Northern and Southern ones. Finally, we show
the improvement that a full-sky observatory brings to test an isotropic
distribution, and we discuss the sensitivity of the Pierre Auger Observatory to
large scale anisotropies.Comment: 16 pages, 6 figures, version accepted for publication by JCA
Destriping of Polarized Data in a CMB Mission with a Circular Scanning Strategy
A major problem in Cosmic Microwave Background (CMB) anisotropy mapping, especially in a total-power mode, is the presence of low-frequency noise in the data streams. If unproperly processed, such low-frequency noise leads to striping in the maps. To deal with this problem, solutions have already been found for mapping the CMB temperature fluctuations but no solution has yet been proposed for the measurement of CMB polarization. Complications arise due to the scan-dependent orientation of the measured polarization. In this paper, we investigate a method for building temperature and polarization maps free of striping effects in the case of a circular scanning strategy mission such as that of the Planck satellite
Measuring CMB polarisation with the Planck mission
In this paper, we discuss why and how the Planck mission, originally designed
and proposed for mapping CMB intensity fluctuations, has been revised for
polarisation measurement capability as well
Effect of Fourier filters in removing periodic systematic effects from CMB data
We consider the application of high-pass Fourier filters to remove periodic
systematic fluctuations from full-sky survey CMB datasets. We compare the
filter performance with destriping codes commonly used to remove the effect of
residual 1/f noise from timelines. As a realistic working case, we use
simulations of the typical Planck scanning strategy and Planck Low Frequency
Instrument noise performance, with spurious periodic fluctuations that mimic a
typical thermal disturbance. We show that the application of Fourier high-pass
filters in chunks always requires subsequent normalisation of induced offsets
by means of destriping. For a complex signal containing all the astrophysical
and instrumental components, the result obtained by applying filter and
destriping in series is comparable to the result obtained by destriping only,
which makes the usefulness of Fourier filters questionable for removing this
kind of effects.Comment: 10 pages, 8 figures, published in Astronomy & Astrophysic
Radio emission of extensive air shower at CODALEMA: Polarization of the radio emission along the v*B vector
Cosmic rays extensive air showers (EAS) are associated with transient radio
emission, which could provide an efficient new detection method of high energy
cosmic rays, combining a calorimetric measurement with a high duty cycle. The
CODALEMA experiment, installed at the Radio Observatory in Nancay, France, is
investigating this phenomenon in the 10^17 eV region. One challenging point is
the understanding of the radio emission mechanism. A first observation
indicating a linear relation between the electric field produced and the cross
product of the shower axis with the geomagnetic field direction has been
presented (B. Revenu, this conference). We will present here other strong
evidences for this linear relationship, and some hints on its physical origin.Comment: Contribution to the 31st International Cosmic Ray Conference, Lodz,
Poland, July 2009. 4 pages, 8 figures. v2: Typo fixed, arxiv references adde
Energy and Flux Measurements of Ultra-High Energy Cosmic Rays Observed During the First ANITA Flight
The first flight of the Antarctic Impulsive Transient Antenna (ANITA)
experiment recorded 16 radio signals that were emitted by cosmic-ray induced
air showers. For 14 of these events, this radiation was reflected from the ice.
The dominant contribution to the radiation from the deflection of positrons and
electrons in the geomagnetic field, which is beamed in the direction of motion
of the air shower. This radiation is reflected from the ice and subsequently
detected by the ANITA experiment at a flight altitude of 36km. In this paper,
we estimate the energy of the 14 individual events and find that the mean
energy of the cosmic-ray sample is 2.9 EeV. By simulating the ANITA flight, we
calculate its exposure for ultra-high energy cosmic rays. We estimate for the
first time the cosmic-ray flux derived only from radio observations. In
addition, we find that the Monte Carlo simulation of the ANITA data set is in
agreement with the total number of observed events and with the properties of
those events.Comment: Added more explanation of the experimental setup and textual
improvement
- …