2,240 research outputs found
CO Line Emission and Absorption from the HL Tau Disk: Where is all the dust?
We present high-resolution infrared spectra of HL Tau, a heavily embedded
young star. The spectra exhibit broad emission lines of hot CO gas as well as
narrow absorption lines of cold CO gas. The column density for this cooler
material (7.5+/-0.2 x 10^18 cm-2) indicates a large column of absorbing gas
along the line of sight. In dense interstellar clouds, this column density of
CO gas is associated with Av~52 magnitudes. However, the extinction toward this
source (Av~23) suggests that there is less dust along the line of sight than
inferred from the CO absorption data. We discuss three possibilities for the
apparent paucity of dust along the line of sight through the flared disk: 1)
the dust extinction has been underestimated due to differences in circumstellar
grain properties, such as grain agglomeration; 2) the effect of scattering has
been underestimated and the actual extinction is much higher; or (3) the line
of sight through the disk is probing a gas-rich, dust-depleted region, possibly
due to the stratification of gas and dust in a pre-planetary disk.Comment: To be published in The Astrophysical Journa
Applying a User-centred Approach to Interactive Visualization Design
Analysing users in their context of work and finding out how and why they use different information resources is essential to provide interactive visualisation systems that match their goals and needs. Designers should actively involve the intended users throughout the whole process. This chapter presents a user-centered approach for the design of interactive visualisation systems. We describe three phases of the iterative visualisation design process: the early envisioning phase, the global specification hase, and the detailed specification phase. The whole design cycle is repeated until some criterion of success is reached. We discuss different techniques for the analysis of users, their tasks and domain. Subsequently, the design of prototypes and evaluation methods in visualisation practice are presented. Finally, we discuss the practical challenges in design and evaluation of collaborative visualisation environments. Our own case studies and those of others are used throughout the whole chapter to illustrate various approaches
Ultrafast modulation of the chemical potential in BaFeAs by coherent phonons
Time- and angle-resolved extreme ultraviolet photoemission spectroscopy is
used to study the electronic structure dynamics in BaFeAs around the
high-symmetry points and . A global oscillation of the Fermi level
at the frequency of the (As) phonon mode is observed. It is argued that
this behavior reflects a modulation of the effective chemical potential in the
photoexcited surface region that arises from the high sensitivity of the band
structure near the Fermi level to the phonon mode combined with a low
electron diffusivity perpendicular to the layers. The results establish a novel
way to tune the electronic properties of iron pnictides: coherent control of
the effective chemical potential. The results further suggest that the
equilibration time for the effective chemical potential needs to be considered
in the ultrafast electronic structure dynamics of materials with weak
interlayer coupling.Comment: 6 pages, 3 figure
Recommended from our members
Ultrafast modulation of the chemical potential in BaFe2As2 by coherent phonons
Time- and angle-resolved extreme ultraviolet photoemission spectroscopy is used to study the electronic structure dynamics in BaFe2As2 around the high-symmetry points Γ and M. A global oscillation of the Fermi level at the frequency of the A1g(As) phonon mode is observed. It is argued that this behavior reflects a modulation of the effective chemical potential in the photoexcited surface region that arises from the high sensitivity of the band structure near the Fermi level to the A1g(As) phonon mode combined with a low electron diffusivity perpendicular to the layers. The results establish a novel way to tune the electronic properties of iron pnictides: coherent control of the effective chemical potential. The results further suggest that the equilibration time for the effective chemical potential needs to be considered in the ultrafast electronic structure dynamics of materials with weak interlayer coupling. © 2014 American Physical Society
Magnetic properties of strained multiferroic : A soft x-ray study
Using resonant soft x-ray techniques we follow the magnetic behavior of a strained epitaxial film of CoCr2O4, a type-II multiferroic. The film is [110] oriented, such that both the ferroelectric and ferromagnetic moments can coexist in-plane. X-ray magnetic circular dichroism (XMCD) is used in scattering and in transmission modes to probe the magnetization of Co and Cr separately. The transmission measurements utilized x-ray excited optical luminescence from the substrate. Resonant soft x-ray diffraction (RXD) was used to study the magnetic order of the low temperature phase. The XMCD signals of Co and Cr appear at the same ordering temperature TC≈90K, and are always opposite in sign. The coercive field of the Co and of Cr moments is the same, and is approximately two orders of magnitude higher than in bulk. Through sum rules analysis an enlarged Co2+ orbital moment (mL) is found, which can explain this hardening. The RXD signal of the (q q 0) reflection appears below TS, the same ordering temperature as the conical magnetic structure in bulk, indicating that this phase remains multiferroic under strain. To describe the azimuthal dependence of this reflection, a slight modification is required to the spin model proposed by the conventional Lyons-Kaplan-Dwight-Menyuk theory for magnetic spinels
V1647 Orionis: Reinvigorated Accretion and the Re-Appearance of McNeil's Nebula
In late 2003, the young eruptive variable star V1647 Orionis optically
brightened by over 5 magnitudes, stayed bright for around 26 months, and then
decline to its pre-outburst level. In August 2008 the star was reported to have
unexpectedly brightened yet again and we herein present the first detailed
observations of this new outburst. Photometrically, the star is now as bright
as it ever was following the 2003 eruption. Spectroscopically, a pronounced P
Cygni profile is again seen in Halpha with an absorption trough extending to
-700 km/s. In the near-infrared, the spectrum now possesses very weak CO
overtone bandhead absorption in contrast to the strong bandhead emission seen
soon after the 2003 event. Water vapor absorption is also much stronger than
previously seen. We discuss the current outburst below and relate it to the
earlier event.Comment: 6 pages, 3 figure
The novel CXCR4 antagonist POL5551 mobilizes hematopoietic stem and progenitor cells with greater efficiency than Plerixafor
Mobilized blood has supplanted bone marrow (BM) as the primary source of hematopoietic stem cells for autologous and allogeneic stem cell transplantation. Pharmacologically enforced egress of hematopoietic stem cells from BM, or mobilization, has been achieved by directly or indirectly targeting the CXCL12/CXCR4 axis. Shortcomings of the standard mobilizing agent, granulocyte colony-stimulating factor (G-CSF), administered alone or in combination with the only approved CXCR4 antagonist, Plerixafor, continue to fuel the quest for new mobilizing agents. Using Protein Epitope Mimetics technology, a novel peptidic CXCR4 antagonist, POL5551, was developed. In vitro data presented herein indicate high affinity to and specificity for CXCR4. POL5551 exhibited rapid mobilization kinetics and unprecedented efficiency in C57BL/6 mice, exceeding that of Plerixafor and at higher doses also of G-CSF. POL5551-mobilized stem cells demonstrated adequate transplantation properties. In contrast to G-CSF, POL5551 did not induce major morphological changes in the BM of mice. Moreover, we provide evidence of direct POL5551 binding to hematopoietic stem and progenitor cells (HSPCs) in vivo, strengthening the hypothesis that CXCR4 antagonists mediate mobilization by direct targeting of HSPCs. In summary, POL5551 is a potent mobilizing agent for HSPCs in mice with promising therapeutic potential if these data can be orroborated in humans
Androgen Receptor Modulation Optimized for Response (ARMOR) Phase I and II Studies: Galeterone for the Treatment of Castration-Resistant Prostate Cancer
Purpose: Galeterone is a selective, multitargeted agent that inhibits CYP17, antagonizes the androgen receptor (AR), and reduces AR expression in prostate cancer cells by causing an increase in AR protein degradation. These open-label phase I and II studies [Androgen Receptor Modulation Optimized for Response-1 (ARMOR1) and ARMOR2 part 1] evaluated the efficacy and safety of galeterone in patients with treatment-naive nonmetastatic or metastatic castration-resistant prostate cancer (CRPC) and established a dose for further study.
Experimental Design: In ARMOR1, 49 patients received increasing doses (650–2,600 mg) of galeterone in capsule formulation; 28 patients in ARMOR2 part 1 received increasing doses (1,700–3,400 mg) of galeterone in tablet formulation for 12 weeks. Patients were evaluated biweekly for safety and efficacy, and pharmacokinetic parameters were assessed.
Results: In ARMOR1, across all doses, 49.0% (24/49) achieved a ≥30% decline in prostate-specific antigen (PSA; PSA30) and 22.4% (11/49) demonstrated a ≥50% PSA decline (PSA50). In ARMOR2 part 1, across all doses, PSA30 was 64.0% (16/25) and PSA50 was 48.0% (12/25). In the 2,550-mg dose cohort, PSA30 was 72.7% (8/11) and PSA50 was 54.5% (6/11). Galeterone was well tolerated; the most common adverse events were fatigue, increased liver enzymes, gastrointestinal events, and pruritus. Most were mild or moderate in severity and required no action and there were no apparent mineralocorticoid excess (AME) events.
Conclusions: The efficacy and safety from ARMOR1 and ARMOR2 part 1 and the pharmacokinetic results support the galeterone tablet dose of 2,550 mg/d for further study. Galeterone was well tolerated and demonstrated pharmacodynamic changes consistent with its selective, multifunctional AR signaling inhibition
Observational diagnostics of gas in protoplanetary disks
Protoplanetary disks are composed primarily of gas (99% of the mass).
Nevertheless, relatively few observational constraints exist for the gas in
disks. In this review, I discuss several observational diagnostics in the UV,
optical, near-IR, mid-IR, and (sub)-mm wavelengths that have been employed to
study the gas in the disks of young stellar objects. I concentrate in
diagnostics that probe the inner 20 AU of the disk, the region where planets
are expected to form. I discuss the potential and limitations of each gas
tracer and present prospects for future research.Comment: Review written for the proceedings of the conference "Origin and
Evolution of Planets 2008", Ascona, Switzerland, June 29 - July 4, 2008. Date
manuscript: October 2008. 17 Pages, 6 graphics, 134 reference
Book Reviews
Reviews of the following books: Portland: A publication of Greater Portland Landmarks, Inc. Text by Josephine H. Detmer and Patricia M. Pancoast; That Wild Fellow John Neal and the American Literary Revolution by Benjamin Leas
- …
