3,276 research outputs found
Extension of nano-confined DNA: quantitative comparison between experiment and theory
The extension of DNA confined to nanochannels has been studied intensively
and in detail. Yet quantitative comparisons between experiments and model
calculations are difficult because most theoretical predictions involve
undetermined prefactors, and because the model parameters (contour length, Kuhn
length, effective width) are difficult to compute reliably, leading to
substantial uncertainties. Here we use a recent asymptotically exact theory for
the DNA extension in the "extended de Gennes regime" that allows us to compare
experimental results with theory. For this purpose we performed new
experiments, measuring the mean DNA extension and its standard deviation while
varying the channel geometry, dye intercalation ratio, and ionic buffer
strength. The experimental results agree very well with theory at high ionic
strengths, indicating that the model parameters are reliable. At low ionic
strengths the agreement is less good. We discuss possible reasons. Our approach
allows, in principle, to measure the Kuhn length and effective width of a
single DNA molecule and more generally of semiflexible polymers in solution.Comment: Revised version, 6 pages, 2 figures, 1 table, supplementary materia
Recommended from our members
Complete Experimental Structure Determination of the p(3x2)pg Phase of Glycine on Cu{110}
We present a quantitative low energy electron diffraction (LEED) surface-crystallograpic
study of the complete adsorption geometry of glycine adsorbed on Cu{110} in the ordered
p(3×2) phase. The glycine molecules form bonds to the surface through the N atoms of the
amino group and the two O atoms of the de-protonated carboxylate group, each with separate
Cu atoms such that every Cu atom in the first layer is involved in a bond. Laterally, N atoms are
nearest to the atop site (displacement 0.41 Å). The O atoms are asymmetrically displaced from
the atop site by 0.54 Å and 1.18 Å with two very different O-Cu bond lengths of 1.93 Å and
2.18 Å. The atom positions of the upper-most Cu layers show small relaxations within 0.07 Å
of the bulk-truncated surface geometry. The unit cell of the adsorbate layer consists of two
glycine molecules, which are related by a glide-line symmetry operation. This study clearly
shows that a significant coverage of adsorbate structures without this glide-line symmetry must
be rejected, both on the grounds of the energy dependence of the spot intensities (LEED-IV
curves) and of systematic absences in the LEED pattern
First identification of excited states in the T = 1/2 nucleus Pd
The first experimental information about excited states in the N = Z + 1 nucleus 93Pd is presented. The experiment was performed using a 205 MeV 58Ni beam from the Vivitron accelerator at IReS, Strasbourg, impinging on a bismuth-backed 40Ca target. Gamma-rays, neutrons and charged particles emitted in the reactions were detected using the Ge detector array Euroball, the Neutron Wall liquid-scintillator array and the Euclides Si charged-particle detector system. The experimental level scheme is compared with the results of new shell model calculations which predict a coupling scheme with aligned neutron-proton pairs to greatly influence the level structure of nuclei at low excitation energies
Identification and rejection of scattered neutrons in AGATA
Gamma rays and neutrons, emitted following spontaneous fission of 252Cf, were
measured in an AGATA experiment performed at INFN Laboratori Nazionali di
Legnaro in Italy. The setup consisted of four AGATA triple cluster detectors
(12 36-fold segmented high-purity germanium crystals), placed at a distance of
50 cm from the source, and 16 HELENA BaF2 detectors. The aim of the experiment
was to study the interaction of neutrons in the segmented high-purity germanium
detectors of AGATA and to investigate the possibility to discriminate neutrons
and gamma rays with the gamma-ray tracking technique. The BaF2 detectors were
used for a time-of-flight measurement, which gave an independent discrimination
of neutrons and gamma rays and which was used to optimise the gamma-ray
tracking-based neutron rejection methods. It was found that standard gamma-ray
tracking, without any additional neutron rejection features, eliminates
effectively most of the interaction points due to recoiling Ge nuclei after
elastic scattering of neutrons. Standard tracking rejects also a significant
amount of the events due to inelastic scattering of neutrons in the germanium
crystals. Further enhancements of the neutron rejection was obtained by setting
conditions on the following quantities, which were evaluated for each event by
the tracking algorithm: energy of the first and second interaction point,
difference in the calculated incoming direction of the gamma ray,
figure-of-merit value. The experimental results of tracking with neutron
rejection agree rather well with Geant4 simulations
Evidence for the Jacobi shape transition in hot 46Ti
The gamma-rays from the decay of the GDR in 46Ti compound nucleus formed in
the 18O+28Si reaction at bombarding energy 105 MeV have been measured in an
experiment using a setup consisting of the combined EUROBALL IV, HECTOR and
EUCLIDES arrays. A comparison of the extracted GDR lineshape data with the
predictions of the thermal shape fluctuation model shows evidence for the
Jacobi shape transition in hot 46Ti. In addition to the previously found broad
structure in the GDR lineshape region at 18-27 MeV caused by large
deformations, the presence of a low energy component (around 10 MeV), due to
the Coriolis splitting in prolate well deformed shape, has been identified for
the first time.Comment: 8 pages, 4 figures, proceedings of the COMEX1 conference, June 2003,
Paris; to be published in Nucl. Phys.
Increasing seasonal variation in the extent of rivers and lakes from 1984 to 2022
Knowledge of the spatial and temporal distribution of surface water is important for water resource management, flood risk assessment, monitoring ecosystem health, constraining estimates of biogeochemical cycles and understanding our climate. While global-scale spatiotemporal change detection of surface water has significantly improved in recent years due to planetary-scale remote sensing and computing, it has remained challenging to distinguish the changing characteristics of rivers and lakes. Here we analyze the spatial extent of permanent and seasonal rivers and lakes globally over the past 38 years based on new data of river system extents and surface water trends. Results show that while the total permanent surface area of both rivers and lakes has remained relatively constant, the areas with intermittent seasonal coverage have increased by 12 % and 27 % for rivers and lakes, respectively. The increase is statistically significant in over 84 % of global water catchments based on Spearman's rank correlations (rho) above 0.05 and p values less than 0.05. The seasonal river extent is nearly 32 % larger than the previously observed annual mean river extent, suggesting large seasonal variations that impact not only ecosystem health but also estimations of terrestrial biogeochemical cycles of carbon. The outcomes of our analysis are shared as the Surface Area of Rivers and Lakes (SARL) database, serving as a valuable resource for monitoring and research of hydrological cycles, ecosystem accounting, and water management.</p
A Search for Selectrons and Squarks at HERA
Data from electron-proton collisions at a center-of-mass energy of 300 GeV
are used for a search for selectrons and squarks within the framework of the
minimal supersymmetric model. The decays of selectrons and squarks into the
lightest supersymmetric particle lead to final states with an electron and
hadrons accompanied by large missing energy and transverse momentum. No signal
is found and new bounds on the existence of these particles are derived. At 95%
confidence level the excluded region extends to 65 GeV for selectron and squark
masses, and to 40 GeV for the mass of the lightest supersymmetric particle.Comment: 13 pages, latex, 6 Figure
Recommended from our members
Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia.
Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = -0.71 to -1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = -0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10-6, 1.7 × 10-9, 3.5 × 10-12 and 1.0 × 10-4, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes
Energy Flow in the Hadronic Final State of Diffractive and Non-Diffractive Deep-Inelastic Scattering at HERA
An investigation of the hadronic final state in diffractive and
non--diffractive deep--inelastic electron--proton scattering at HERA is
presented, where diffractive data are selected experimentally by demanding a
large gap in pseudo --rapidity around the proton remnant direction. The
transverse energy flow in the hadronic final state is evaluated using a set of
estimators which quantify topological properties. Using available Monte Carlo
QCD calculations, it is demonstrated that the final state in diffractive DIS
exhibits the features expected if the interaction is interpreted as the
scattering of an electron off a current quark with associated effects of
perturbative QCD. A model in which deep--inelastic diffraction is taken to be
the exchange of a pomeron with partonic structure is found to reproduce the
measurements well. Models for deep--inelastic scattering, in which a
sizeable diffractive contribution is present because of non--perturbative
effects in the production of the hadronic final state, reproduce the general
tendencies of the data but in all give a worse description.Comment: 22 pages, latex, 6 Figures appended as uuencoded fil
Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response - a double-blind PET study in schizophrenia
Blockade of dopamine D2 receptors remains a common feature of all antipsychotics. It has been hypothesized that the extrastriatal (cortical, thalamic) dopamine D2 receptors may be more critical to antipsychotic response than the striatal dopamine D2 receptors. This is the first double-blind controlled study to examine the relationship between striatal and extrastriatal D2 occupancy and clinical effects. Fourteen patients with recent onset psychosis were assigned to low or high doses of risperidone (1 mg vs 4 mg/day) or olanzapine (2.5 mg vs 15 mg/day) in order to achieve a broad range of D2 occupancy levels across subjects. Clinical response, side effects, striatal ([11C]-raclopride-positron emission tomography (PET)), and extrastriatal ([11C]-FLB 457-PET) D2 receptors were evaluated after treatment. The measured D2 occupancies ranged from 50 to 92% in striatal and 4 to 95% in the different extrastriatal (frontal, temporal, thalamic) regions. Striatal and extrastriatal occupancies were correlated with dose, drug plasma levels, and with each other. Striatal D2 occupancy predicted response in positive psychotic symptoms (r=0.62, p=0.01), but not for negative symptoms (r=0.2, p=0.5). Extrastriatal D2 occupancy did not predict response in positive or negative symptoms. The two subjects who experienced motor side effects had the highest striatal occupancies in the cohort. Striatal D2 blockade predicted antipsychotic response better than frontal, temporal, and thalamic occupancy. These results, when combined with the preclinical data implicating the mesolimbic striatum in antipsychotic response, suggest that dopamine D2 blockade within specific regions of the striatum may be most critical for ameliorating psychosis in schizophrenia.peer-reviewe
- …
