377 research outputs found

    Safety and efficacy of the supreme biodegradable polymer sirolimus-eluting stent in patients with diabetes mellitus

    Get PDF
    Patients with diabetes mellitus (DM) have worse outcomes following percutaneous coronary intervention than nondiabetic patients. The novel Supreme DES is a biodegradable polymer sirolimus-eluting stent designed to synchronize early drug delivery, limiting the potential for long-term inflammatory response. The purpose of this study was to evaluate the safety and efficacy of the Supreme DES in patients with DM. Methods This is a prespecified analysis of the diabetic subgroup from the PIONEER III randomized (2:1), controlled trial, comparing the Supreme DES with a durable polymer everolimus-eluting stent (DP-EES). The primary safety and efficacy composite endpoint was target lesion failure at 1 year, a composite of cardiac death, target vessel myocardial infarction, or clinically driven target lesion revascularization. Results The PIONEER III trial randomized 1629 patients, of which 494 (30.3%) had DM with 331 (398 lesions) randomly assigned to Supreme DES and 163 (208 lesions) to DP-EES. Among patients with DM, target lesion failure at 1 year was 6.1% (20/331) with Supreme DES vs 3.7% (6/163) with DP-EES (hazard ratio = 1.65; 95% confidence interval = 0.66-4.10, P = .28). The composite of cardiac death or target vessel myocardial infarction was 3.3% (11/331) with Supreme DES and 3.7% (6/163) with DP-EES (hazard ratio = 0.90; 95% confidence interval = 0.33-2.44, P = .83). There were no significant differences in other secondary endpoints. Conclusions This prespecified substudy of the PIONEER III trial demonstrated the relative safety and efficacy of the novel Supreme DES when compared with commercially available DP-EES in diabetics at 1 year. Longer term follow-up will be required to ensure continued safety and efficacy of the Supreme DES

    A Randomized Comparison of the Endeavor Zotarolimus-Eluting Stent Versus the TAXUS Paclitaxel-Eluting Stent in De Novo Native Coronary Lesions 12-Month Outcomes From the ENDEAVOR IV Trial

    Get PDF
    ObjectivesThe ENDEAVOR IV (Randomized Comparison of Zotarolimus-Eluting and Paclitaxel-Eluting Stents in Patients with Coronary Artery Disease) trial evaluated the safety and efficacy of the zotarolimus-eluting stent (ZES) compared with the paclitaxel-eluting stent (PES).BackgroundFirst-generation drug-eluting stents have reduced angiographic and clinical restenosis, but long-term safety remains controversial. A second-generation drug-eluting stent, which delivers zotarolimus, a potent antiproliferative agent, via a biocompatible phosphorylcholine polymer on a cobalt alloy thin-strut stent has shown promising experimental and early clinical results.MethodsThis is a prospective, randomized (1:1), single-blind, controlled trial comparing outcomes of patients with single de novo coronary lesions treated with ZES or PES. The primary end point was noninferiority of 9-month target vessel failure defined as cardiac death, myocardial infarction, or target vessel revascularization.ResultsAmong a total of 1,548 patients assigned to ZES (n = 773) or PES (n = 775), at 9 months, ZES was noninferior to PES with rates of target vessel failure 6.6% versus 7.1%, respectively (pnoninferiority≤ 0.001). There were fewer periprocedural myocardial infarctions with ZES (0.5% vs. 2.2%; p = 0.007), whereas at 12 months, there were no significant differences between groups in rates of cardiac death, myocardial infarction, target vessel revascularization, or stent thrombosis. Although incidence of 8-month binary angiographic in-segment restenosis was higher in patients treated with ZES versus PES (15.3% vs. 10.4%; p = 0.284), rates of 12-month target lesion revascularization were similar (4.5% vs. 3.2%; p = 0.228), especially in patients without planned angiographic follow-up (3.6% vs. 3.2%; p = 0.756).ConclusionsThese findings demonstrate that ZES has similar clinical safety and efficacy compared with PES in simple and medium complexity single de novo coronary lesions. (ENDEAVOR IV Clinical Trial; NCT00217269

    Heterologous Amyloid Seeding: Revisiting the Role of Acetylcholinesterase in Alzheimer's Disease

    Get PDF
    Neurodegenerative diseases associated with abnormal protein folding and ordered aggregation require an initial trigger which may be infectious, inherited, post-inflammatory or idiopathic. Proteolytic cleavage to generate vulnerable precursors, such as amyloid-β peptide (Aβ) production via β and γ secretases in Alzheimer's Disease (AD), is one such trigger, but the proteolytic removal of these fragments is also aetiologically important. The levels of Aβ in the central nervous system are regulated by several catabolic proteases, including insulysin (IDE) and neprilysin (NEP). The known association of human acetylcholinesterase (hAChE) with pathological aggregates in AD together with its ability to increase Aβ fibrilization prompted us to search for proteolytic triggers that could enhance this process. The hAChE C-terminal domain (T40, AChE575-614) is an exposed amphiphilic α-helix involved in enzyme oligomerisation, but it also contains a conformational switch region (CSR) with high propensity for conversion to non-native (hidden) β-strand, a property associated with amyloidogenicity. A synthetic peptide (AChE586-599) encompassing the CSR region shares homology with Aβ and forms β-sheet amyloid fibrils. We investigated the influence of IDE and NEP proteolysis on the formation and degradation of relevant hAChE β-sheet species. By combining reverse-phase HPLC and mass spectrometry, we established that the enzyme digestion profiles on T40 versus AChE586-599, or versus Aβ, differed. Moreover, IDE digestion of T40 triggered the conformational switch from α- to β-structures, resulting in surfactant CSR species that self-assembled into amyloid fibril precursors (oligomers). Crucially, these CSR species significantly increased Aβ fibril formation both by seeding the energetically unfavorable formation of amyloid nuclei and by enhancing the rate of amyloid elongation. Hence, these results may offer an explanation for observations that implicate hAChE in the extent of Aβ deposition in the brain. Furthermore, this process of heterologous amyloid seeding by a proteolytic fragment from another protein may represent a previously underestimated pathological trigger, implying that the abundance of the major amyloidogenic species (Aβ in AD, for example) may not be the only important factor in neurodegeneration

    Preventing β-amyloid fibrillization and deposition: β-sheet breakers and pathological chaperone inhibitors

    Get PDF
    Central to the pathogenesis of Alzheimer's disease (AD) is the conversion of normal, soluble β-amyloid (sAβ) to oligomeric, fibrillar Aβ. This process of conformational conversion can be influenced by interactions with other proteins that can stabilize the disease-associated state; these proteins have been termed 'pathological chaperones'. In a number of AD models, intervention that block soluble Aβ aggregation, including β-sheet breakers, and compounds that block interactions with pathological chaperones, have been shown to be highly effective. When combined with early pathology detection, these therapeutic strategies hold great promise as effective and relatively toxicity free methods of preventing AD related pathology
    corecore