23 research outputs found

    A comprehensive sensitivity and uncertainty analysis for discharge and nitrate-nitrogen loads involving multiple discrete model inputs under future changing conditions

    Get PDF
    Environmental modeling studies aim to infer the impacts on environmental variables that are caused by natural and human-induced changes in environmental systems. Changes in environmental systems are typically implemented as discrete scenarios in environmental models to simulate environmental variables under changing conditions. The scenario development of a model input usually involves several data sources and perhaps other models, which are potential sources of uncertainty. The setup and the parametrization of the implemented environmental model are additional sources of uncertainty for the simulation of environmental variables. Yet to draw well-informed conclusions from the model simulations it is essential to identify the dominant sources of uncertainty. In impact studies in two Austrian catchments the eco-hydrological model Soil and Water Assessment Tool (SWAT) was applied to simulate discharge and nitrate-nitrogen (NO3--N) loads under future changing conditions. For both catchments the SWAT model was set up with different spatial aggregations. Non-unique model parameter sets were identified that adequately reproduced observations of discharge and NO3--N loads. We developed scenarios of future changes for land use, point source emissions, and climate and implemented the scenario realizations in the different SWAT model setups with different model parametrizations, which resulted in 7000 combinations of scenarios and model setups for both catchments. With all model combinations we simulated daily discharge and NO3--N loads at the catchment outlets. The analysis of the 7000 generated model combinations of both case studies had two main goals: (i) to identify the dominant controls on the simulation of discharge and NO3--N loads in the two case studies and (ii) to assess how the considered inputs control the simulation of discharge and NO3--N loads. To assess the impact of the input scenarios, the model setup, and the parametrization on the simulation of discharge and NO3--N loads, we employed methods of global sensitivity analysis (GSA). The uncertainties in the simulation of discharge and NO3--N loads that resulted from the 7000 SWAT model combinations were evaluated visually. We present approaches for the visualization of the simulation uncertainties that support the diagnosis of how the analyzed inputs affected the simulation of discharge and NO3--N loads. Based on the GSA we identified climate change and the model parametrization as being the most influential model inputs for the simulation of discharge and NO3--N loads in both case studies. In contrast, the impact of the model setup on the simulation of discharge and NO3--N loads was low, and the changes in land use and point source emissions were found to have the lowest impact on the simulated discharge and NO3--N loads. The visual analysis of the uncertainty bands illustrated that the deviations in precipitation of the different climate scenarios to historic records dominated the changes in simulation outputs, while the differences in air temperature showed no considerable impact.</p

    Thermodynamics in the hydrologic response: Travel time formulation and application to Alpine catchments

    Get PDF
    This paper presents a spatially-explicit model for hydro-thermal response simulations of Alpine catchments, accounting for advective and non-advective energy fluxes in stream networks characterized by arbitrary degrees of geomorphological complexity. The relevance of the work stems from the increasing scientific interest concerning the impacts of the warming climate on water resources management and temperature-controlled ecological processes. The description of the advective energy uxes is cast in a travel time formulation of water and energy transport, resulting in a closed form solution for water temperature evolution in the soil compartment. The application to Alpine catchments hinges on the boundary conditions provided by the fully-distributed and physically-based snow model Alpine3D. The performance of the simulations is illustrated by comparing modeled and measured hydrographs and thermographs at the outlet of the Dischma catchment (45 km2) in the Swiss Alps. The Monte Carlo calibration shows that the model is robust and that a simultaneous fitting of stream ow and stream temperature reduces the uncertainty in the hydrological parameters estimation. The calibrated model also provides a good fit to the measurements in the validation period, suggesting that it could be employed for predictive applications, both for hydrological and ecological purposes. The temperature of the subsurface flow, as described by the proposed travel time formulation, proves warmer than the stream temperature during winter and colder during summer. Finally, the spatially-explicit results of the model during snowmelt show a notable hydro-thermal spatial variability in the river network, owing to the small spatial correlation of infilltration and meteorological forcings in Alpine regions

    Climate change and freshwater zooplankton: what does it boil down to?

    Get PDF
    Recently, major advances in the climate–zooplankton interface have been made some of which appeared to receive much attention in a broader audience of ecologists as well. In contrast to the marine realm, however, we still lack a more holistic summary of recent knowledge in freshwater. We discuss climate change-related variation in physical and biological attributes of lakes and running waters, high-order ecological functions, and subsequent alteration in zooplankton abundance, phenology, distribution, body size, community structure, life history parameters, and behavior by focusing on community level responses. The adequacy of large-scale climatic indices in ecology has received considerable support and provided a framework for the interpretation of community and species level responses in freshwater zooplankton. Modeling perspectives deserve particular consideration, since this promising stream of ecology is of particular applicability in climate change research owing to the inherently predictive nature of this field. In the future, ecologists should expand their research on species beyond daphnids, should address questions as to how different intrinsic and extrinsic drivers interact, should move beyond correlative approaches toward more mechanistic explanations, and last but not least, should facilitate transfer of biological data both across space and time

    Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts?

    Get PDF
    Statistical downscaling methods are popular post-processing tools which are widely used in many sectors to adapt the coarse-resolution biased outputs from global climate simulations to the regional-to-local scale typically required by users. They range from simple and pragmatic Bias Correction (BC) methods, which directly adjust the model outputs of interest (e.g. precipitation) according to the available local observations, to more complex Perfect Prognosis (PP) ones, which indirectly derive local predictions (e.g. precipitation) from appropriate upper-air large-scale model variables (predictors). Statistical downscaling methods have been extensively used and critically assessed in climate change applications; however, their advantages and limitations in seasonal forecasting are not well understood yet. In particular, a key problem in this context is whether they serve to improve the forecast quality/skill of raw model outputs beyond the adjustment of their systematic biases. In this paper we analyze this issue by applying two state-of-the-art BC and two PP methods to downscale precipitation from a multimodel seasonal hindcast in a challenging tropical region, the Philippines. To properly assess the potential added value beyond the reduction of model biases, we consider two validation scores which are not sensitive to changes in the mean (correlation and reliability categories). Our results show that, whereas BC methods maintain or worsen the skill of the raw model forecasts, PP methods can yield significant skill improvement (worsening) in cases for which the large-scale predictor variables considered are better (worse) predicted by the model than precipitation. For instance, PP methods are found to increase (decrease) model reliability in nearly 40% of the stations considered in boreal summer (autumn). Therefore, the choice of a convenient downscaling approach (either BC or PP) depends on the region and the season.This study was partially supported by the SPECS and EUPORIAS projects, funded by the European Commission through the Seventh Framework Programme for Research under grant agreements 308378 and 308291, respectively. JMG acknowledges partial support from the project MULTI-SDM (CGL2015-66583-R, MINECO/FEDER)

    Development of a longterm dataset of solid/liquid precipitation

    No full text
    Solid precipitation (mainly snow, but snow and ice pellets or hail as well), is an important parameter for climate studies. But as this parameter usually is not available operationally before the second part of the 20th century and nowadays is not reported by automatic stations, information usable for long term climate studies is rare. Therefore a proxy for the fraction of solid precipitation based on a nonlinear relationship between the percentage of solid precipitation and monthly mean temperature was developed for the Greater Alpine Region of Europe and applied to the existing longterm high resolution temperature and precipitation grids (5 arcmin). In this paper the method is introduced and some examples of the resulting datasets available at monthly resolution for 1800&ndash;2003 are given

    Storminess in northern Italy and the Adriatic Sea reaching back to 1760

    No full text
    This study investigates storminess in northern Italy and the northern Adriatic Sea through the examination of several storm proxies. These proxies are based on homogenized daily mean pressure series given at a set of stations (Genoa, Milan, Padua, Turin, and Hvar). The application of widely accepted and well-known methods on pressure series allows for a long-term year-to-year analysis of the intra-seasonal storm variability. As storminess is usually more intense throughout the cold season, our analysis is limited to the October\u2013March period of each year. The following proxies are considered in this study: First, we assess the statistics of geostrophic wind speed. These statistics are derived from two adjacent triangles that are located across the Adriatic Sea (Padua\u2013Hvar\u2013Genoa) and in northern Italy (Genoa\u2013Padua\u2013Turin). Second, we evaluate annual statistics of time series of pressure tendency. Last, intra-seasonal low percentiles of pressure are also made use of. These proxies are used to describe the evolution of the storm climate far back in time, covering in some cases a 260-year long period. The proxies show pronounced interannual and interdecadal variability, but no sustained long-term trend

    Climate and land-use changes affecting river sediment and brown trout in alpine countries--a review

    Get PDF
    BACKGROUND, AIM, AND SCOPE: Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated. APPROACH: We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries. Have climate change and land-use change increased erosion and sediment loads in rivers? Do we have indications of an increase in riverbed clogging? Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging? RESULTS: Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show that suspended sediments affect the health and behaviour of fish when available in high amounts. Point measurements in large rivers indicate no common lethal threat and suspended sediment is rarely measured continuously in small rivers. However, effects on fish can be expected under environmentally relevant conditions. River bed clogging impairs the reproductive performance of gravel-spawning fish. Discussion: Overall, higher erosion and increased levels of fine sediment going into rivers are expected in future. Additionally, sediment loads in rivers are suspected to have considerably impaired gravel bed structure and brown trout spawning is impeded. Timing of discharge is put forward and is now more likely to affect brown trout spawning than in previous decades. Conclusions: Reports on riverbed clogging from changes in erosion and fine sediment deposition patterns, caused by climate change and land-use change are rare. This review identifies both a risk of increases in climate erosive forces and fine sediment loads in rivers of alpine countries. Increased river discharge and sediment loads in winter and early spring could be especially harmful for brown trout reproduction and development of young life stages. Recently published studies indicate a decline in trout reproduction from riverbed clogging in many rivers in lowlands and alpine regions. However, the multitude of factors in natural complex ecosystems makes it difficult to address a single causative factor. Recommendations and perspectives: Further investigations into the consequences of climate change and land-use change on river systems are needed. Small rivers, of high importance for the recruitment of gravel-spawning fish, are often neglected. Studies on river bed clogging are rare and the few existing studies are not comparable. Thus, there is a strong need for the development of methods to assess sediment input and river bed clogging. As well, studies on the effects to fish from suspended sediments and consequences of gravel beds clogging under natural conditions are urgently needed
    corecore