3,356 research outputs found

    Fermionic Mach-Zehnder interferometer subject to a quantum bath

    Full text link
    We study fermions in a Mach-Zehnder interferometer, subject to a quantum-mechanical environment leading to inelastic scattering, decoherence, renormalization effects, and time-dependent conductance fluctuations. Both the loss of interference contrast as well as the shot noise are calculated, using equations of motion and leading order perturbation theory. The full dependence of the shot-noise correction on setup parameters, voltage, temperature and the bath spectrum is presented. We find an interesting contribution due to correlations between the fluctuating renormalized phase shift and the output current, discuss the limiting behaviours at low and high voltages, and compare with simpler models of dephasing.Comment: 5 pages, 3 figure

    Nonlinear and Quantum Optics with Whispering Gallery Resonators

    Get PDF
    Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other waves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.Comment: This is a review paper with 615 references, submitted to J. Op

    Quantum Signatures of the Optomechanical Instability

    Get PDF
    In the past few years, coupling strengths between light and mechanical motion in optomechanical setups have improved by orders of magnitude. Here we show that, in the standard setup under continuous laser illumination, the steady state of the mechanical oscillator can develop a non-classical, strongly negative Wigner density if the optomechanical coupling is large at the single-photon level. Because of its robustness, such a Wigner density can be mapped using optical homodyne tomography. These features are observed near the onset of the instability towards self-induced oscillations. We show that there are also distinct signatures in the photon-photon correlation function g(2)(t)g^{(2)}(t) in that regime, including oscillations decaying on a time scale not only much longer than the optical cavity decay time, but even longer than the \emph{mechanical} decay time.Comment: 6 pages including 1 appendix. 6 Figures. Correcte

    Optomechanical cooling of levitated spheres with doubly-resonant fields

    Full text link
    Optomechanical cooling of levitated dielectric particles represents a promising new approach in the quest to cool small mechanical resonators towards their quantum ground state. We investigate two-mode cooling of levitated nanospheres in a self-trapping regime. We identify a rich structure of split sidebands (by a mechanism unrelated to usual strong-coupling effects) and strong cooling even when one mode is blue detuned. We show the best regimes occur when both optical fields cooperatively cool and trap the nanosphere, where cooling rates are over an order of magnitude faster compared to corresponding single-sideband cooling rates.Comment: 8 Pages, 7 figure

    Decoherence of a particle in a ring

    Full text link
    We consider a particle coupled to a dissipative environment and derive a perturbative formula for the dephasing rate based on the purity of the reduced probability matrix. We apply this formula to the problem of a particle on a ring, that interacts with a dirty metal environment. At low but finite temperatures we find a dephasing rate T3/2\propto T^{3/2}, and identify dephasing lengths for large and for small rings. These findings shed light on recent Monte Carlo data regarding the effective mass of the particle. At zero temperature we find that spatial fluctuations suppress the possibility of having a power law decay of coherence.Comment: 5 pages, 1 figure, proofed version to be published in EP

    Spin Relaxation in a Quantum Dot due to Nyquist Noise

    Full text link
    We calculate electron and nuclear spin relaxation rates in a quantum dot due to the combined action of Nyquist noise and electron-nuclei hyperfine or spin-orbit interactions. The relaxation rate is linear in the resistance of the gate circuit and, in the case of spin-orbit interaction, it depends essentially on the orientations of both the static magnetic field and the fluctuating electric field, as well as on the ratio between Rashba and Dresselhaus interaction constants. We provide numerical estimates of the relaxation rate for typical system parameters, compare our results with other, previously discussed mechanisms, and show that the Nyquist mechanism can have an appreciable effect for experimentally relevant systems.Comment: v2: New discussion of arbitrary gate setups (1 new figure), more Comments on experiments; 6 pages, 4 figure

    Theory of ground state cooling of a mechanical oscillator using dynamical back-action

    Full text link
    A quantum theory of cooling of a mechanical oscillator by radiation pressure-induced dynamical back-action is developed, which is analogous to sideband cooling of trapped ions. We find that final occupancies well below unity can be attained when the mechanical oscillation frequency is larger than the cavity linewidth. It is shown that the final average occupancy can be retrieved directly from the optical output spectrum.Comment: 5 pages, 2 figure

    Decoherence in weak localization II: Bethe-Salpeter calculation of Cooperon

    Full text link
    This is the second in a series of two papers (I and II) on the problem of decoherence in weak localization. In paper I, we discussed how the Pauli principle could be incorporated into an influence functional approach for calculating the Cooperon propagator and the magnetoconductivity. In the present paper II, we check and confirm the results so obtained by diagrammatically setting up a Bethe-Salpeter equation for the Cooperon, which includes self-energy and vertex terms on an equal footing and is free from both infrared and ultraviolet divergencies. We then approximately solve this Bethe-Salpeter equation by the Ansatz C(t) = C^0 (t) e^{-F(t)}, where the decay function F(t) determines the decoherence rate. We show that in order to obtain a divergence-free expression for the decay function F(t), it is sufficient to calculate C^1 (t), the Cooperon in the position-time representation to first order in the interaction. Paper II is independent of paper I and can be read without detailed knowledge of the latter.Comment: 18 pages, 3 figures. This is the second of a series of two papers on decoherence. The first introduces an influence functional approach, the second obtains equivalent results using a diagrammatic Bethe-Salpeter equation. For a concise summary of the main results and conclusions, see Section II of the first pape
    corecore