3,899 research outputs found

    Quantum Signatures of the Optomechanical Instability

    Get PDF
    In the past few years, coupling strengths between light and mechanical motion in optomechanical setups have improved by orders of magnitude. Here we show that, in the standard setup under continuous laser illumination, the steady state of the mechanical oscillator can develop a non-classical, strongly negative Wigner density if the optomechanical coupling is large at the single-photon level. Because of its robustness, such a Wigner density can be mapped using optical homodyne tomography. These features are observed near the onset of the instability towards self-induced oscillations. We show that there are also distinct signatures in the photon-photon correlation function g(2)(t)g^{(2)}(t) in that regime, including oscillations decaying on a time scale not only much longer than the optical cavity decay time, but even longer than the \emph{mechanical} decay time.Comment: 6 pages including 1 appendix. 6 Figures. Correcte

    Nonlinear and Quantum Optics with Whispering Gallery Resonators

    Get PDF
    Optical Whispering Gallery Modes (WGMs) derive their name from a famous acoustic phenomenon of guiding a wave by a curved boundary observed nearly a century ago. This phenomenon has a rather general nature, equally applicable to sound and all other waves. It enables resonators of unique properties attractive both in science and engineering. Very high quality factors of optical WGM resonators persisting in a wide wavelength range spanning from radio frequencies to ultraviolet light, their small mode volume, and tunable in- and out- coupling make them exceptionally efficient for nonlinear optical applications. Nonlinear optics facilitates interaction of photons with each other and with other physical systems, and is of prime importance in quantum optics. In this paper we review numerous applications of WGM resonators in nonlinear and quantum optics. We outline the current areas of interest, summarize progress, highlight difficulties, and discuss possible future development trends in these areas.Comment: This is a review paper with 615 references, submitted to J. Op

    Fermionic Mach-Zehnder interferometer subject to a quantum bath

    Full text link
    We study fermions in a Mach-Zehnder interferometer, subject to a quantum-mechanical environment leading to inelastic scattering, decoherence, renormalization effects, and time-dependent conductance fluctuations. Both the loss of interference contrast as well as the shot noise are calculated, using equations of motion and leading order perturbation theory. The full dependence of the shot-noise correction on setup parameters, voltage, temperature and the bath spectrum is presented. We find an interesting contribution due to correlations between the fluctuating renormalized phase shift and the output current, discuss the limiting behaviours at low and high voltages, and compare with simpler models of dephasing.Comment: 5 pages, 3 figure

    Decoherence of a particle in a ring

    Full text link
    We consider a particle coupled to a dissipative environment and derive a perturbative formula for the dephasing rate based on the purity of the reduced probability matrix. We apply this formula to the problem of a particle on a ring, that interacts with a dirty metal environment. At low but finite temperatures we find a dephasing rate T3/2\propto T^{3/2}, and identify dephasing lengths for large and for small rings. These findings shed light on recent Monte Carlo data regarding the effective mass of the particle. At zero temperature we find that spatial fluctuations suppress the possibility of having a power law decay of coherence.Comment: 5 pages, 1 figure, proofed version to be published in EP

    Spin Relaxation in a Quantum Dot due to Nyquist Noise

    Full text link
    We calculate electron and nuclear spin relaxation rates in a quantum dot due to the combined action of Nyquist noise and electron-nuclei hyperfine or spin-orbit interactions. The relaxation rate is linear in the resistance of the gate circuit and, in the case of spin-orbit interaction, it depends essentially on the orientations of both the static magnetic field and the fluctuating electric field, as well as on the ratio between Rashba and Dresselhaus interaction constants. We provide numerical estimates of the relaxation rate for typical system parameters, compare our results with other, previously discussed mechanisms, and show that the Nyquist mechanism can have an appreciable effect for experimentally relevant systems.Comment: v2: New discussion of arbitrary gate setups (1 new figure), more Comments on experiments; 6 pages, 4 figure

    Characterizing Differences in the Aerosol Plume and Cloud Structure over Ascension Island During the 2016 and 2017 Biomass Burning Seasons

    Get PDF
    Marine boundary layer clouds, including the transition from stratocumulus to cumulus, are poorly represented in numerical weather prediction and general circulation models. In many cases, the complex physical relationships between marine boundary cloud morphology and the environmental conditions in which the clouds exist are not well understood. Such uncertainties arise in the presence of biomass burning carbonaceous aerosol, as is the case over the southeast Atlantic Ocean. It is likely that the absorbing and heating properties of these aerosols influence the microphysical composition and macrophysical arrangement of marine stratocumulus and trade cumulus in this region; however, this has yet to be quantified. The deployment of the Atmospheric Radiation Measurement Mobile Facility #1 (AMF1) in support of LASIC (Layered Atlantic Smoke Interactions with Clouds) provided a unique opportunity to collect observations of cloud and aerosol properties during two consecutive biomass burning seasons during July through October of 2016 and 2017 over Ascension Island (7.96 S, 14.35 W). Through the use of AMF1 observations, the Modern Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and back trajectories from the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), it will be demonstrated that differences in the atmospheric circulation during the two years result in varying aerosol conditions over Ascension Island. When the aerosol plume is overhead, the aerosol loading is higher during the 2016 season as a result of a weaker subtropical high-pressure system. Furthermore, the aerosol plume originates from central Africa in 2016, but further south in 2017. Contrasts in the season-to-season and day-to-day aerosol loading are used to categorize boundary layer cloud and sub-cloud turbulence measurements above Ascension Island using the AMF1 Doppler lidar and cloud radar

    Stub model for dephasing in a quantum dot

    Full text link
    As an alternative to Buttiker's dephasing lead model, we examine a dephasing stub. Both models are phenomenological ways to introduce decoherence in chaotic scattering by a quantum dot. The difference is that the dephasing lead opens up the quantum dot by connecting it to an electron reservoir, while the dephasing stub is closed at one end. Voltage fluctuations in the stub take over the dephasing role from the reservoir. Because the quantum dot with dephasing lead is an open system, only expectation values of the current can be forced to vanish at low frequencies, while the outcome of an individual measurement is not so constrained. The quantum dot with dephasing stub, in contrast, remains a closed system with a vanishing low-frequency current at each and every measurement. This difference is a crucial one in the context of quantum algorithms, which are based on the outcome of individual measurements rather than on expectation values. We demonstrate that the dephasing stub model has a parameter range in which the voltage fluctuations are sufficiently strong to suppress quantum interference effects, while still being sufficiently weak that classical current fluctuations can be neglected relative to the nonequilibrium shot noise.Comment: 8 pages with 1 figure; contribution for the special issue of J.Phys.A on "Trends in Quantum Chaotic Scattering

    Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion

    Full text link
    We present a fully quantum theory describing the cooling of a cantilever coupled via radiation pressure to an illuminated optical cavity. Applying the quantum noise approach to the fluctuations of the radiation pressure force, we derive the opto-mechanical cooling rate and the minimum achievable phonon number. We find that reaching the quantum limit of arbitrarily small phonon numbers requires going into the good cavity (resolved phonon sideband) regime where the cavity linewidth is much smaller than the mechanical frequency and the corresponding cavity detuning. This is in contrast to the common assumption that the mechanical frequency and the cavity detuning should be comparable to the cavity damping.Comment: 5 pages, 2 figure

    Comprehensive maximum likelihood estimation of diffusion compartment models towards reliable mapping of brain microstructure

    Get PDF
    open4siDiffusion MRI is a key in-vivo non invasive imaging capability that can probe the microstructure of the brain. However,its limited resolution requires complex voxelwise generative models of the diffusion. Diffusion Compartment (DC) models divide the voxel into smaller compartments in which diffusion is homogeneous. We present a comprehensive framework for maximum likelihood estimation (MLE) of such models that jointly features ML estimators of (i) the baseline MR signal,(ii) the noise variance,(iii) compartment proportions,and (iv) diffusion-related parameters. ML estimators are key to providing reliable mapping of brain microstructure as they are asymptotically unbiased and of minimal variance. We compare our algorithm (which efficiently exploits analytical properties of MLE) to alternative implementations and a state-of-theart strategy. Simulation results show that our approach offers the best reduction in computational burden while guaranteeing convergence of numerical estimators to the MLE. In-vivo results also reveal remarkably reliable microstructure mapping in areas as complex as the centrum semiovale. Our ML framework accommodates any DC model and is available freely for multi-tensor models as part of the ANIMA software (https://github.com/Inria-Visages/Anima-Public/wiki).Stamm, Aymeric; Commowick, Olivier; Warfield, Simon K.; Vantini, SimoneStamm, Aymeric; Commowick, Olivier; Warfield, Simon K.; Vantini, Simon
    corecore