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In the past few years, coupling strengths between light and mechanical motion in optomechanical

setups have improved by orders of magnitude. Here we show that, in the standard setup under continuous

laser illumination, the steady state of the mechanical oscillator can develop a nonclassical, strongly

negative Wigner density if the optomechanical coupling is comparable to or larger than the optical decay

rate and the mechanical frequency. Because of its robustness, such a Wigner density can be mapped using

optical homodyne tomography. This feature is observed near the onset of the instability towards self-

induced oscillations. We show that there are also distinct signatures in the photon-photon correlation

function gð2ÞðtÞ in that regime, including oscillations decaying on a time scale not only much longer than

the optical cavity decay time but even longer than the mechanical decay time.
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By coupling optical and mechanical degrees of freedom,
the emerging field of optomechanics provides exciting new
opportunities to study the quantum mechanical behavior of
macroscopic objects (for reviews, see Refs. [1,2]). Recent
optomechanical cooling experiments are successfully
bringing nanomechanical oscillators into their quantum
mechanical ground state [3,4]. The same optomechanical
coupling also promises the possibility of single-quadrature
measurements of the resulting mechanical quantum states
with the help of the light field [5–7]. For a reproducible and
persistent quantum state, such measurements would result
in an experimental determination of its full Wigner density
via tomography, similar towhat has been achieved inmicro-
scopic systems, for single ions or photons [8,9]. The recent
advances in fabricating optomechanical devices have dras-
tically improved coupling parameters, e.g., for optome-
chanical crystals [10], in microwave setups [3], and in
other devices likeGaAs disks [11] or toroidal opticalmicro-
cavities [12]. It will likely be possible relatively soon to
achieve optomechanical coupling strengths g0 at the single-
photon level that are comparable to the optical cavity decay
rate �, a feat that has already been achieved in cold atom
optomechanical systems [13,14]. This regime of strongly
nonlinear quantum optomechanics promises to pave the
way towards generating and detecting novel quantum states
in optomechanical systems. It is currently only beginning to
be explored theoretically [15–17], although very early work
already discussed quantum optomechanical effects in the
(unrealistic) absence of any dissipation [18,19].

In the classical regime, nonlinear dynamics is known to
occur when the system is driven by a blue-detuned laser.

When the input laser power crosses a certain threshold,
the mechanical oscillator will undergo a Hopf bifurcation
and start self-induced mechanical oscillations, a phenome-
non termed ‘‘parametric instability’’ [20–25]. The quan-
tum dynamics of this regime has first been studied in
Ref. [15], and there is interesting synchronization behavior
for arrays of coupled oscillators of this type [26].
In this Letter, we show that, for strong optomechanical

couplings g0 comparable to or greater than the optical
decay rate � and mechanical frequency !M (g0=� * 1,
g20=ð� �!MÞ * 1), a large laser driving, and an effectively

zero temperature thermal bath, a nonclassical state of the
mechanical oscillator with strongly negative Wigner den-
sity can be produced around the onset of self-induced
oscillations. Because the state is time independent, one
may use single-quadrature homodyne tomography to ex-
perimentally reconstruct its nonclassical Wigner density.
In addition, we propose to use the two-point photon corre-

lation function gð2ÞðtÞ as an experimentally convenient probe
for the peculiar quantum dynamics near the bifurcation. We
identify two distinct signatures that enable experimentalists
to reliably detect the onset and growth of the self-induced
oscillation. We provide an explanation of the nonclassical

decay of gð2ÞðtÞ in both the red- and blue-detuned regimes.
Within the rotating wave approximation, an optome-

chanical system can be described by the following standard
Hamiltonian:

Ĥ ¼ @½��þ g0ðb̂y þ b̂Þ�âyâþ @!Mb̂
yb̂

þ @�Lðây þ âÞ þ Ĥdiss: (1)
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Here, â=b̂ are the operators for the photon/phonon modes,
!M is the mechanical frequency, and�L is the laser driving
amplitude. � ¼ !L �!C is the detuning of the laser from
the cavity’s unperturbed resonance (i.e., evaluated for zero
mechanical displacement). g0 describes the strength of the
optomechanical coupling at the single-photon level.

When the dissipative terms in Hdiss are taken into
account, the density matrix �̂ of the combined photon-
phonon system evolves according to the quantum master
equation:

d�̂

dt
¼ L½�̂� ¼ ½Ĥ; �̂�

i@
þ �D½b̂; �̂� þ �D½â; �̂�: (2)

Here, L is the quantum Liouville operator describing the
time evolution of the density matrix �̂, where we incorpo-
rate dissipation in the photon and phonon subsystems
with decay rates � and �, respectively. The standard

Lindblad term is given by D½Ô; �̂� ¼ Ô �̂ Ôy�
1
2 ðÔyÔ �̂þ�̂ÔyÔÞ. Note that we will assume zero bath

temperature in our simulations, which will be reachable to
a good approximation when GHz-frequency setups
(e.g., optomechanical crystals) are deployed in dilution
refrigerator settings. In this Letter, we are interested in
the steady state solution of Eq. (2), where all the transient
dynamics has died out. This is obtained numerically by
finding the density matrix satisfying L½�̂� ¼ 0 using the
standard Arnoldi algorithm, as implemented in the ARPACK

package. Due to its persistence, this state is ideal for
making homodyne measurements of its mechanical
Wigner density, in contrast to transient scenarios.

Specifically, we are interested in the mechanical Wigner

density WMðx; pÞ ¼ 1
�@

R1
�1hx� yj�̂Mjxþ yie2ipy=@dy,

where �̂M is the mechanical density matrix, obtained by
tracing out the optical degrees of freedom from �̂. The
Wigner density is the quantum analog of the classical
Liouville phase space probability density. A negative
Wigner density is a strong signature of a nonclassical state.
Early investigations [15] of the optomechanical instability
in the regime around g0 � � did not turn up nonclassical
states.

In Figs. 1(a)–1(e), we show the overall properties of the
steady state solutions. As we increase the laser detuning
while keeping the input laser power fixed (points A ! B !
C), the phonon number in the mechanical oscillator rises
sharply [plot (e)], signaling the onset of the self-induced
oscillations. This is also reflected in the mechanical
Wigner density WMðx; pÞ. Below the onset (point A),
WMðx; pÞ is a simple Gaussian, which starts to broaden
just below the threshold, as the susceptibility of the system
diverges and quantum fluctuations are strongly amplified
(point B). Above the threshold, we have a coherent state
undergoing circular motion in phase space but with an
undetermined phase, which is the Wigner density observed
at point C [15,17].

However, such a simple picture is inadequate for an
optomechanical system with g0 � �, i.e., when one
approaches the optomechanical instability deep in the
quantum regime [27]. In such a system, we observe that,
for a range of detuning � and laser driving �L, the me-
chanical self-induced oscillation produces strongly non-
classical states with large negative areas in the Wigner
density. This can be seen in the example of Fig. 1(d).
Negative rims, shown in brighter color, develop at ampli-
tudes slightly smaller than the average amplitude of oscil-
lation. Plots (f)-(h) in Fig. 1 analyze negative states more
deeply. In stateD, (f) shows that themechanical Fano factor

F ¼ h�n2
b
i

hnbi dips below the coherent state value 1, and its

phonon number distribution (g) has a reduced variance.
At larger coupling g ¼ 0:6!M (h), the negative state exhib-
its a sharp peak and a smoother one, as opposed to a single
broader peak of the non-negative state [28]. Overall, (f )-(h)
show that the negative states are closer to a single Fock state
or a superposition of a few Fock states, as compared with a
coherent state [29]. Note, however, that the origin of this
nonclassical state is not the same as that in the well-studied
micromaser [30–33]. In the micromaser, the mechanism
relies crucially on the swapping of a single excitation
between an excited atom and a cavity over a fixed interac-
tion time. These features are absent in our system.
Figure 1(i) maps out the regions in parameter space

where negative Wigner densities occur. This ‘‘phase dia-
gram’’ is shown as a function of the ‘‘quantum parameter’’
� ¼ g0

� [15] and of the laser detuning�!M, at a fixed value

of the laser driving strength �L. It has been obtained by
solving for the steady state of the optomechanical system
under constant illumination, and the Wigner density is
considered as nonclassical if a sufficiently large area turns
out to be negative. The threshold criterion is a negative area
of at least 3% of the positive area, the minimum value
being at least 5% in the absolute value of the maximum.
The numerical results shown here indicate that, for the
parameters considered here, starting at g0

� ¼ 0:8, the

negative Wigner density states appear around detuning
�=!M ¼ 0, and a second negative Wigner density region
opens up at g0� ¼ 1:6, around �=!M ¼ 0:9 at the first blue

sideband, where the instability is driven efficiently. The
phonon number distribution displays a pronounced nar-
rowing, getting closer to a single or a few mechanical
Fock states. However, we find that many photon-phonon
levels are still involved in the dynamics in the regime
considered here, and there seems to be no simple explana-
tion involving only a few levels.
These steady state nonclassical Wigner densities could

be reconstructed via optomechanical quantum nondemoli-
tion quadrature detection [5,6] and subsequent quantum
state tomography [34]. This merely involves illumination
with another amplitude-modulated laser beam for readout,
as explained in Ref. [6]. When observed, these would
provide an accessible example of nonclassical states in a
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fabricated mesoscopic mechanical object. To date, there
has been no experimental observation of nonclassical
Wigner densities in the domain of micro- or nanomechan-
ical structures. The experiment that came closest to that
goal, and in the process did produce nonclassical mechani-
cal Fock states, employed a complex multilayered super-
conducting circuit with piezoelectric coupling to a
superconducting qubit and ultrafast pulse sequences [35].
Furthermore, in their setup, the resonator lifetime is too
short to permit the reconstruction of the full Wigner den-
sity. By contrast, once optomechanical parameters can be
improved to reach the single-photon strong coupling
regime, the scheme discussed here would be relatively
straightforward, being based on continuous laser illumina-
tion of an optomechanical setup whose fabrication is much
less complex, as it involves only one material. Recently, a
coupling g0=� � 0:007 has been achieved in an optome-
chanical crystal system [36], and further improvement is
expected in that setup. In addition, there is the possibility
that the parameters required here may be reached in cold
atom optomechanical setups [13,14].

The full mechanical state reconstruction in the nonlinear
quantum regime is an enticing and challenging goal.
Nevertheless, it requires many experimental runs. It will
be helpful to have other means of optically probing the
quantum dynamics of the system around the onset of the

instability. A very suitable probe for the dynamics is pro-
vided by the two-point photon correlation function

gð2ÞðtÞ ¼ hây� ây�þtâ�þtâ�i
ðhây� â�iÞ2

: (3)

The angled brackets denote the average over �̂. Here, we
employ the two-point correlator for the intracavity photon
field, extractable from our numerical simulations.
However, we emphasize that it can be shown using input-
output theory [37] that Eq. (3) also directly provides the

gð2Þ function for the fluctuations of the output optical field.
In a steady state, gð2Þ does not depend on the initial time

�. Photon correlations are readily accessible in quantum
optics experiments today with single-photon detectors
(e.g., using a Hanbury Brown–Twiss setup), and they
have been successfully employed to characterize the
change of photonic statistics upon transmission through
nonlinear systems. The most important example is photon
antibunching in the resonance fluorescence of single-
photon emitters, which has also recently been predicted
to occur in optomechanical systems for sufficiently strong
coupling [16].
As can be seen in Fig. 2, there are clear signatures in the

photon correlator around the onset of parametric instability

(point B). In particular, gð2ÞðtÞ persists at some value above
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FIG. 1 (color online). Nonclassical states in an optomechanical system. The laser input �L is held constant, and the laser detuning �
increases from the steady states A to D. The mechanical Wigner densities of these states are shown in (a)–(d). xZPF and pZPF are zero
point fluctuations of the oscillator’s position and momentum, respectively. Plot (e) shows the start of the self-induced oscillation, where
the phonon number nb of the oscillator rises quickly between states B and C. As the detuning further increases to D, a nonclassical
mechanical quantum state with negative mechanical Wigner density state appears, as shown in (d). In (f), the evolution of the
mechanical Fano factor F as a function of � is shown. It dips below the Poisson value 1 (the dashed line) in the nonclassical state
shown here. In (g) and (h), we show that the negative Wigner density states have more sharply peaked phonon number distributions
pðnÞ compared with non-negative states. In (g), the pðnÞ of states C and D [plots (c),(d)] are compared. In (h), where g0 ¼ 0:6!M, the
negative state (solid line) has two clear peaks in pðnÞ, in contrast to a single smooth peak for the non-negative state (dashed line).
The Wigner densities of these two states are shown as insets. Finally, in (i), we show two regions in the parameter space of detuning
� and coupling g0, where significant negative Wigner density states exist. States A-D are indicated here. In all plots, other physical
parameters are g0 ¼ 0:36!M, �M ¼ 0:3!M, �M ¼ 0:00147!M, and �L ¼ 0:311!M, except for (h), where g0 ¼ 0:6!M and �L ¼
0:186!M. The intracavity photon number is na � 0:1–0:7 when g0 ¼ 0:36!M, �!M � � � 0.
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unity over a very long time (middle panel, Fig. 2). It can be
proven (see the Supplemental Material [37]) that, as long
as the steady state of the system is not degenerate, we

always have gð2ÞðtÞ ! 1þ � expð�t=�gÞ in the long-time

limit t ! 1. Here, the decay rate is 1=�g ¼ Reð�1Þ, where
�1 is the eigenvalue of the Liouville operator L in Eq. (2)
with the largest nonzero real part, characterizing the slow-
est decay in the system. This can be verified by plotting

ln½gð2ÞðtÞ � 1� to extract �g, which indeed agrees with the

�1 obtained fromL (see Fig. 3). As can be seen in the inset,
�g rises strongly around the start of the self-induced oscil-

lation (point B). This is connected to the fact that the
overall mechanical damping rate goes to zero near the
Hopf bifurcation [23].

The second signature in gð2Þ is the appearance of
higher harmonics when the self-induced oscillations are
fully developed (see the insets of Fig. 2). To understand
these in a semiclassical picture, we approximate the
photon correlator via the classical intensity correlator,
hj�ðtþ �Þj2j�ð�Þj2i�. The light amplitude �ðtÞ ¼
ei�ðtÞP

n�ne
in!Mt is modulated harmonically by the

mechanical oscillations, as detailed in Ref. [23]. In the
Supplemental Material [37], we show that a fully devel-
oped mechanical self-induced oscillation results in higher

harmonics in gð2Þ. To understand the decay of the resulting
oscillations in the gð2Þ, we take into account the mechanical
phase diffusion induced by the radiation pressure shot
noise [38]. presented the first analysis of the quantum
contribution to phase diffusion in the parametric instability
regime. Here, we follow a slightly modified approach.
The phase fluctuates according to 	�ðtÞ ¼ ðm!MAÞ�1 �R

t
0 dt

0	Fðt0Þ cosð!Mt
0Þ, which yields

Var ½	�ðtÞ� ¼ 1

ðm!MAÞ2
t

4
½SFFð!MÞ þ SFFð�!MÞ�;

where SFF is the force noise spectrum (see Ref. [39]).
Thus,

hj�ðtþ �Þj2j�ð�Þj2i� ¼
Xþ1

n¼�1
Zne

in!Mte�n2h	�ðtÞ2i=2;

where Zn ¼ jP1
m¼�1 �m�

�
m�nj2. This theory explains

qualitatively the shape of the correlator even deep in the
quantum regime (see the Supplemental Material [37]).
Finally, we note that, in the red-detuned regime, the photon
correlator decay can be described by the optomechanical
cooling rate (see the Supplemental Material [37]).
To summarize, in this Letter, we investigated quantum

signatures of light and mechanics for an optomechanical
system in the parametric instability regime. We found that,
at strong optomechanical coupling [g0 � �, g20�ð��!MÞ],
for a range of detuning and input power, the steady state
mechanical Wigner density contains strong negative parts,
signaling stable nonclassical states. Single-quadrature
homodyne measurements can be used to reconstruct the
Wigner density. In addition, the two-point photon correla-

tor gð2ÞðtÞ displays two clear signatures near the onset of
parametric instability. Finally, we explained the slow
long-time decay of the photon correlations as due to the
mechanical phase diffusion induced by photon shot noise.
One should note that experimental observation of some of
these photon correlation features does not require being in
the nonlinear quantum regime and could succeed even in
existing setups.
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