309 research outputs found

    Numerical study of an arcan tensile compression shear test in dynamic: application to bonded joints

    Get PDF
    This paper presents a numerical study of the Arcan TCS testing device under dynamic conditions. This test is commonly used to characterize the mechanical behavior of bonded joints subjected to combined quasi-static loadings. In this study, the question of its extensibility to dynamic loadings by the use of an impactor guided in a drop tower is investigated. A dedicated finite element model is built under the plane stress assumption. Stress distributions in the adhesive are analysed trought time ans space for several configurations

    Isolation of bacteriocinogenic Enterococcus mundtii strain from Hemiodema spectabilis (sea cucumber)

    Get PDF
    En este estudio se evaluó la actividad antibacteriana de una cepa de Enterococcus mundtii tw278 productora de bacteriocina aislada del contenido intestinal de Hemiodema spectabilis (pepino de mar), recolectado en la costa patagónica de la Argentina. La cepa se identificó mediante pruebas bioquímicas y análisis filogenético del gen ARNr 16S. Además, se detectó el gen estructural que codifica para la mundticina KS mediante técnicas de PCR. La investigación de los factores de virulencia reveló que la cepa de E. mundtii tw278 no presentó actividad gelatinasa ni hemolítica y fue susceptible a todos los antibióticos analizados, excepto la cefalotina. La máxima actividad inhibitoria se logró al final de la fase logarítmica cuando se utilizó el caldo MRS como medio de cultivo a 35 °C. Luego de 12 h de incubación, el sobrenadante libre de células (SLC) alcanzó un título de 163 840 unidades arbitrarias por mililitro contra la cepa indicadora de Listeria innocua ATCC 33090. El SLC exhibió actividad contra todas las cepas de Listeria ensayadas, Enterococcus faecalis ATCC 29212, enterococos resistentes a vancomicina (Van A, Van B y Van C), Lactobacillus plantarum TwLb 5 y Vibrio anguilarum V10. Este sería el primer estudio que informa el aislamiento de una cepa bacteriocinogénica de E. mundtii aislada del contenido intestinal de Hemiodema spectabilis.This study was conducted to evaluate the antibacterial activity of a bacteriocinproducing Enterococcus mundtii tw278 strain isolated from the intestinal content of Hemiodema spectabilis (sea cucumber) sampled in the Patagonian coast of Argentine. The strain was identified by biochemical tests and 16S rRNA gene phylogenetic analyses. The structural gene that codifies mundticin KS was detected by PCR. Investigation of virulence factors revealed that E. mundtii tw278 did not display gelatinase or hemolytic activity and was susceptible to all antibiotics assayed, except cefalotin. Maximum inhibitory activity was achieved at the end of logarithmic phase when MRS broth was used as culture media at 35 °C. After 12 h of incubation, cell-free supernatant (CFS) reached a titre of 163 840 arbitrary units per mililitre against the target bacteria Listeria innocua ATCC 33090. CFS showed activity against all the Listeria strains assayed, Enterococcus faecalis ATCC 29212, vancomycin-resistant enterococci (Van A, Van B and Van C), Lactobacillus plantarum TwLb 5 and Vibrio anguilarum V10. This would be the first study to report the isolation of a bacteriocinogenic E. mundtii strain from intestinal content of Hemiodema spectabilis

    Molecular spectroscopy: Complexity of excited-state dynamics in DNA

    Get PDF
    Absorption of ultraviolet light by DNA is known to lead to carcinogenic mutations, but the processes between photon absorption and the photochemical reactions are poorly understood. In their study of the excited-stated dynamics of model DNA helices using femtosecond transient absorption spectroscopy1, Crespo-Hernández et al. observe that the picosecond component of the transient signals recorded for the adenine–thymine oligonucleotide (dA)18(dT)18 is close to that for (dA)18, but quite different from that for (dAdT)9(dAdT)9; from this observation, they conclude that excimer formation limits excitation energy to one strand at a time. Here we use time-resolved fluorescence spectroscopy to probe the excited-state dynamics, which reveals the complexity of these systems and indicates that the interpretation of Crespo-Hernández et al. is an oversimplification. We also comment on the pertinence of separating base stacking and base pairing in excited-state dynamics of double helices and question the authors' assignment of the long-lived signal component found for (dA)18(dT)18 to adenine excimers

    Curvature-coupling dependence of membrane protein diffusion coefficients

    Full text link
    We consider the lateral diffusion of a protein interacting with the curvature of the membrane. The interaction energy is minimized if the particle is at a membrane position with a certain curvature that agrees with the spontaneous curvature of the particle. We employ stochastic simulations that take into account both the thermal fluctuations of the membrane and the diffusive behavior of the particle. In this study we neglect the influence of the particle on the membrane dynamics, thus the membrane dynamics agrees with that of a freely fluctuating membrane. Overall, we find that this curvature-coupling substantially enhances the diffusion coefficient. We compare the ratio of the projected or measured diffusion coefficient and the free intramembrane diffusion coefficient, which is a parameter of the simulations, with analytical results that rely on several approximations. We find that the simulations always lead to a somewhat smaller diffusion coefficient than our analytical approach. A detailed study of the correlations of the forces acting on the particle indicates that the diffusing inclusion tries to follow favorable positions on the membrane, such that forces along the trajectory are on average smaller than they would be for random particle positions.Comment: 16 pages, 8 figure

    Oscillations by Minimal Bacterial Suicide Circuits Reveal Hidden Facets of Host-Circuit Physiology

    Get PDF
    Synthetic biology seeks to enable programmed control of cellular behavior though engineered biological systems. These systems typically consist of synthetic circuits that function inside, and interact with, complex host cells possessing pre-existing metabolic and regulatory networks. Nevertheless, while designing systems, a simple well-defined interface between the synthetic gene circuit and the host is frequently assumed. We describe the generation of robust but unexpected oscillations in the densities of bacterium Escherichia coli populations by simple synthetic suicide circuits containing quorum components and a lysis gene. Contrary to design expectations, oscillations required neither the quorum sensing genes (luxR and luxI) nor known regulatory elements in the PluxI promoter. Instead, oscillations were likely due to density-dependent plasmid amplification that established a population-level negative feedback. A mathematical model based on this mechanism captures the key characteristics of oscillations, and model predictions regarding perturbations to plasmid amplification were experimentally validated. Our results underscore the importance of plasmid copy number and potential impact of “hidden interactions” on the behavior of engineered gene circuits - a major challenge for standardizing biological parts. As synthetic biology grows as a discipline, increasing value may be derived from tools that enable the assessment of parts in their final context

    PLoS One

    Get PDF
    [This corrects the article DOI: 10.1371/journal.pone.0196711.]

    Growth-Rate Dependence Reveals Design Principles of Plasmid Copy Number Control

    Get PDF
    Genetic circuits in bacteria are intimately coupled to the cellular growth rate as many parameters of gene expression are growth-rate dependent. Growth-rate dependence can be particularly pronounced for genes on plasmids; therefore the native regulatory systems of a plasmid such as its replication control system are characterized by growth-rate dependent parameters and regulator concentrations. This natural growth-rate dependent variation of regulator concentrations can be used for a quantitative analysis of the design of such regulatory systems. Here we analyze the growth-rate dependence of parameters of the copy number control system of ColE1-type plasmids in E. coli. This analysis allows us to infer the form of the control function and suggests that the Rom protein increases the sensitivity of control

    Accelerating Drug Development Using Biomarkers: A Case Study with Sitagliptin, A Novel DPP4 Inhibitor for Type 2 Diabetes

    Get PDF
    The leveraged use of biomarkers presents an opportunity in understanding target engagement and disease impact while accelerating drug development. For effective integration in drug development, it is essential for biomarkers to aid in the elucidation of mechanisms of action and disease progression. The recent years have witnessed significant progress in biomarker selection, validation, and qualification, while enabling surrogate and clinical endpoint qualification and application. Biomarkers play a central role in target validation for novel mechanisms. They also play a central role in the learning/confirming paradigm, particularly when utilized in concert with pharmacokinetic/pharmacodynamic modeling. Clearly, these attributes make biomarker integration attractive for scientific and regulatory applications to new drug development. In this review, applications of proximal, or target engagement, and distal, or disease-related, biomarkers are highlighted using the example of the recent development of sitagliptin for type 2 diabetes, wherein elucidation of target engagement and disease-related biomarkers significantly accelerated sitagliptin drug development. Importantly, use of biomarkers as tools facilitated design of clinical efficacy trials while streamlining dose focus and optimization, the net impact of which reduced overall cycle time to filing as compared to the industry average

    The evolution of bicontinuous polymeric nanospheres in aqueous solution

    Get PDF
    Complex polymeric nanospheres in aqueous solution are desirable for their promising potential in encapsulation and templating applications. Understanding how they evolve in solution enables better control of the final structures. By unifying insights from cryoTEM and small angle X-ray scattering (SAXS), we present a mechanism for the development of bicontinuous polymeric nanospheres (BPNs) in aqueous solution from a semi-crystalline comb-like block copolymer that possesses temperature-responsive functionality. During the initial stages of water addition to THF solutions of the copolymer the aggregates are predominantly vesicles; but above a water content of 53% irregular aggregates of phase separated material appear, often microns in diameter and of indeterminate shape. We also observe a cononsolvency regime for the copolymer in THF–water mixtures from 22 to 36%. The structured large aggregates gradually decrease in size throughout dialysis, and the BPNs only appear upon cooling the fully aqueous dispersions from 35 °C to 5 °C. Thus, the final BPNs are ultimately the result of a reversible temperature-induced morphological transition

    Safety and tolerability of sitagliptin in patients with type 2 diabetes: a pooled analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sitagliptin, a highly selective dipeptidyl peptidase-4 inhibitor, is the first in a new class of oral antihyperglycemic agents (AHAs) for the treatment of patients with type 2 diabetes. Type 2 diabetes is a life-long disease requiring chronic treatment and management. Therefore, robust assessment of the long-term safety and tolerability of newer therapeutic agents is of importance. The purpose of this analysis was to assess the safety and tolerability of sitagliptin by pooling 12 large, double-blind, Phase IIb and III studies up to 2 years in duration. Methods: This analysis included 6139 patients with type 2 diabetes receiving either sitagliptin 100 mg/day (N = 3415) or a comparator agent (placebo or an active comparator) (N = 2724; non-exposed group). The 12 studies from which this pooled population was drawn represent the double-blind, randomized, Phase IIB and III studies that included patients treated with the clinical dose of sitagliptin (100 mg/day) for at least 18 weeks up to 2 years and that were available in a single safety database as of November 2007. These 12 studies assessed sitagliptin as monotherapy, initial combination therapy with metformin, or add-on combination therapy with other oral AHAs (metformin, pioglitazone, sulfonylurea, sulfonylurea + metformin, or metformin + rosiglitazone). Patients in the non-exposed group were taking placebo, pioglitazone, metformin, sulfonylurea, sulfonylurea + metformin, or metformin + rosiglitazone. This safety analysis used patient-level data from each study to evaluate clinical and laboratory adverse experiences.</p> <p>Results</p> <p>For clinical adverse experiences, the incidence rates of adverse experiences overall, serious adverse experiences, and discontinuations due to adverse experiences were similar in the sitagliptin and non-exposed groups. The incidence rates of specific adverse experiences were also generally similar in the two groups, with the exception of an increased incidence rate of hypoglycemia observed in the non-exposed group. The incidence rates of drug-related adverse experiences overall and discontinuations due to drug-related adverse experiences were higher in the non-exposed group, primarily due to the increased incidence rate of hypoglycemia in this group. For cardiac- and ischemia-related adverse experiences (including serious events), there were no meaningful between-group differences. No meaningful differences between groups in laboratory adverse experiences, either summary measures or specific adverse experiences, were observed.</p> <p>Conclusion</p> <p>In patients with type 2 diabetes, sitagliptin 100 mg/day was well tolerated in clinical trials up to 2 years in duration.</p
    corecore