1,283 research outputs found

    Enhancing Consultants' IT Skills: A Reverse Mentoring Project

    Get PDF
    13-16 July 2002 Many medical students arrive with excellent IT skills and experience of mentoring their peers in secondary school. Senior clinicians, by contrast, did not grow up with the technology and often feel left behind by the IT revolution. This generation gap is often seen as a threat to the authority of clinical tutors. We have set up a reverse mentoring scheme to help consultants develop their IT skills. With a grant from the post graduate dean, we have recruited thirty medical students to act as personal trainers to thirty consultants and specialist registrars. Each participant is issued with a set of learning vouchers which enables them to purchase four hours of training and a password to access the learning resources from the project website. This paper will describe the methods used, and report on the results of this unique reverse mentoring scheme

    Self-buckling and self-writhing of semi-flexible microorganisms

    Full text link
    Multi-flagellated microorganisms can buckle and writhe under their own activity as they swim through a viscous fluid. New equilibrium configurations and steady-state dynamics then emerge which depend on the organism's mechanical properties and on the oriented distribution of flagella along its surface. Modeling the cell body as a semi-flexible Kirchhoff rod and coupling the mechanics to a dynamically evolving flagellar orientation field, we derive the Euler-Poincar{\'e} equations governing dynamics of the system, and rationalize experimental observations of buckling and writhing of elongated swarmer {\it P. mirabilis} cells. A sequence of bifurcations is identified as the body is made more compliant, due to both buckling and torsional instabilities. The results suggest that swarmer cells invest no more resources in maintaining membrane integrity than is necessary to prevent self-buckling.Comment: 6 pages, 3 figure

    Effective practices of international volunteering for health : perspectives from partner organizations

    Get PDF
    Abstract: The demand for international volunteer experiences to promote global health and nutrition is increasing and numerous studies have documented the experiences of the international volunteers who travel abroad; however, little is known about effective practices from the perspective of partner organizations. This study aims to understand how variables such as the skill-level of volunteers, the duration of service, cultural and language training, and other key variables affect partner organizations’ perceptions of volunteer effectiveness at promoting healthcare and nutrition..

    GEO 600 and the GEO-HF upgrade program: successes and challenges

    Get PDF
    The German-British laser-interferometric gravitational wave detector GEO 600 is in its 14th year of operation since its first lock in 2001. After GEO 600 participated in science runs with other first-generation detectors, a program known as GEO-HF began in 2009. The goal was to improve the detector sensitivity at high frequencies, around 1 kHz and above, with technologically advanced yet minimally invasive upgrades. Simultaneously, the detector would record science quality data in between commissioning activities. As of early 2014, all of the planned upgrades have been carried out and sensitivity improvements of up to a factor of four at the high-frequency end of the observation band have been achieved. Besides science data collection, an experimental program is ongoing with the goal to further improve the sensitivity and evaluate future detector technologies. We summarize the results of the GEO-HF program to date and discuss its successes and challenges

    Climate change and the Great Barrier Reef: a vulnerability assessment

    Get PDF
    Reef-building corals (Order Scleractinia Class Anthozoa) form extensive skeletons of calcium carbonate (limestone), depositing enough material over time to form vast reef structures that may be easily seen from space. The majority of reef-building corals are hard (stony) scleractinian corals. Many octocorals (especially soft corals in the family Alcyoniidae and the blue coral Heliopora) and some hydrozoan corals (such as Millepora) also contribute to reef-building. Corals form the framework of reef structures, while other organisms such as calcareous algae (especially red coralline algae) play a key role in cementing and consolidating the reef framework. This chapter focuses on the vulnerability of reef-building corals to climate change. The implications of climate change for macroalgae are covered in chapter 7 and a broader treatment of reef processes is provided in chapter 17.This is Chapter 10 of Climate change and the Great Barrier Reef: a vulnerability assessment. The entire book can be found at http://hdl.handle.net/11017/13

    Observation of Wigner cusps in a metallic carbon nanotube

    Full text link
    Previous gate-dependent conductance measurements of metallic carbon nanotubes have revealed unexplainable conductance suppressions, occurring at two different gate voltages. These were previously attributed to the gate-dependency of contact resistance. Our gate-dependent conductivity measurements on a metallic nanotube with known chirality show that these bimodal conductance suppressions are the manifestations of Wigner cusps, often seen in atomic and nuclear physics experiments.Comment: 6 pages, 3 figure

    Health trajectories reveal the dynamic contributions of host genetic resistance and tolerance to infection outcome

    Get PDF
    Resistance and tolerance are two alternative strategies hosts can adopt to survive infections. Both strategies may be genetically controlled. To date, the relative contribution of resistance and tolerance to infection outcome is poorly understood. Here, we use a bioluminescent Listeria monocytogenes (Lm) infection challenge model to study the genetic determination and dynamic contributions of host resistance and tolerance to listeriosis in four genetically diverse mouse strains. Using conventional statistical analyses, we detect significant genetic variation in both resistance and tolerance, but cannot capture the time-dependent relative importance of either host strategy. We overcome these limitations through the development of novel statistical tools to analyse individual infection trajectories portraying simultaneous changes in infection severity and health. Based on these tools, early expression of resistance followed by expression of tolerance emerge as important hallmarks for surviving Lm infections. Our trajectory analysis further reveals that survivors and non-survivors follow distinct infection paths (which are also genetically determined) and provides new survival thresholds as objective endpoints in infection experiments. Future studies may use trajectories as novel traits for mapping and identifying genes that control infection dynamics and outcome. A Matlab script for user-friendly trajectory analysis is provided

    Social Cognition in Alzheimer's Disease: A Separate Construct Contributing to Dependence

    Get PDF
    The extent to which social cognitive changes reflect a discrete constellation of symptoms dissociable from general cognitive changes in Alzheimer's disease (AD) is unclear. Moreover, whether social cognitive symptoms contribute to disease severity and progression is unknown. The current multicenter study investigated cross-sectional and longitudinal associations between social cognition measured with six items from the Blessed Dementia Rating Scale, general cognition, and dependence in 517 participants with probable AD. Participants were monitored every 6 months for 5.5 years. Results from multivariate latent growth curve models adjusted for sex, age, education, depression, and recruitment site revealed that social cognition and general cognition were unrelated cross-sectionally and throughout time. However, baseline levels of each were related independently to dependence, and change values of each were related independently to change in dependence. These findings highlight the separability of social and general cognition in AD. Results underscore the relevance of considering social cognition when modeling disease and estimating clinical outcomes related to patient disability

    Soluble iron conservation and colloidal iron dynamics in a hydrothermal plume

    Get PDF
    Iron (Fe) limits or co-limits primary productivity and nitrogen fixation in large regions of the world's oceans, and the supply of Fe from hydrothermal vents to the deep ocean is now known to be extensive. However, the mechanisms that control the amount of hydrothermal Fe that is stabilized in the deep ocean, and thus dictate the impact of hydrothermal Fe sources on surface ocean biogeochemistry, are unclear. To learn more, we have examined the dispersion of total dissolvable Fe (TDFe), dissolved Fe (dFe) and soluble Fe (sFe) in the buoyant and non-buoyant hydrothermal plume above the Beebe vent field, Caribbean Sea. We have also characterized plume particles using electron microscopy and synchrotron based spectromicroscopy. We show that the majority of dFe in the Beebe hydrothermal plume was present as colloidal Fe (cFe = dFe − sFe). During ascent of the buoyant plume, a significant fraction of particulate Fe (pFe = TDFe − dFe) was lost to settling and exchange with colloids. Conversely, the opposite was observed in the non-buoyant plume, where pFe concentrations increased during non-buoyant plume dilution, cFe concentrations decreased apparently due to colloid aggregation. Elemental mapping of carbon, oxygen and iron in plume particles reveals their close association and indicates that exchanges of Fe between colloids and particles must include transformations of organic carbon and Fe oxyhydroxide minerals. Notably, sFe is largely conserved during plume dilution, and this is likely to be due to stabilization by organic ligands, in contrast to the more dynamic exchanges between pFe and cFe. This study highlights that the size of the sFe stabilizing ligand pool, and the rate of iron-rich colloid aggregation will control the amount and physico-chemical composition of dFe supplied to the ocean interior from hydrothermal systems. Both the ligand pool, and the rate of cFe aggregation in hydrothermal plumes remain uncertain and determining these are important intermediate goals to more accurately assess the impact of hydrothermalism on the ocean's carbon cycle. This article is part of a special issue entitled: “Cycles of trace elements and isotopes in the ocean – GEOTRACES and beyond” - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González

    Semidiurnal temperature changes caused by tidal front movements in the warm season in seabed habitats on the Georges Bank northern margin and their ecological implications

    Get PDF
    This article is distributed under the terms of the Creative Commons Public Domain. The definitive version was published in PLoS ONE 8 (2013): e55273, doi:10.1371/journal.pone.0055273.Georges Bank is a large, shallow feature separating the Gulf of Maine from the Atlantic Ocean. Previous studies demonstrated a strong tidal-mixing front during the warm season on the northern bank margin between thermally stratified water in the Gulf of Maine and mixed water on the bank. Tides transport warm water off the bank during flood tide and cool gulf water onto the bank during ebb tide. During 10 days in August 2009, we mapped frontal temperatures in five study areas along ~100 km of the bank margin. The seabed “frontal zone”, where temperature changed with frontal movment, experienced semidiurnal temperature maxima and minima. The tidal excursion of the frontal boundary between stratified and mixed water ranged 6 to 10 km. This “frontal boundary zone” was narrower than the frontal zone. Along transects perpendicular to the bank margin, seabed temperature change at individual sites ranged from 7.0°C in the frontal zone to 0.0°C in mixed bank water. At time series in frontal zone stations, changes during tidal cycles ranged from 1.2 to 6.1°C. The greatest rate of change (−2.48°C hr−1) occurred at mid-ebb. Geographic plots of seabed temperature change allowed the mapping of up to 8 subareas in each study area. The magnitude of temperature change in a subarea depended on its location in the frontal zone. Frontal movement had the greatest effect on seabed temperature in the 40 to 80 m depth interval. Subareas experiencing maximum temperature change in the frontal zone were not in the frontal boundary zone, but rather several km gulfward (off-bank) of the frontal boundary zone. These results provide a new ecological framework for examining the effect of tidally-driven temperature variability on the distribution, food resources, and reproductive success of benthic invertebrate and demersal fish species living in tidal front habitats.This study was supported by salary funds from the regular annual salary budget from Northeast Fisheries Science Center (NEFSC) and United States Geological Survey Woods Hole Coastal and Marine Science Center (USGS WH C&MSC), respectively; ship time funds from the NEFSC annual budget for days-at-sea ship operations; equipment from the NEFSC and USGS WH C&MSC annual equipment budgets
    corecore