209 research outputs found

    1 H -Imidazole-4-carbo­nitrile

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75107/1/S1600536805014509.pd

    Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results.</p> <p>Results</p> <p>Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes.</p> <p>Conclusion</p> <p>Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.</p

    Computer simulation of glioma growth and morphology

    Get PDF
    Despite major advances in the study of glioma, the quantitative links between intra-tumor molecular/cellular properties, clinically observable properties such as morphology, and critical tumor behaviors such as growth and invasiveness remain unclear, hampering more effective coupling of tumor physical characteristics with implications for prognosis and therapy. Although molecular biology, histopathology, and radiological imaging are employed in this endeavor, studies are severely challenged by the multitude of different physical scales involved in tumor growth, i.e., from molecular nanoscale to cell microscale and finally to tissue centimeter scale. Consequently, it is often difficult to determine the underlying dynamics across dimensions. New techniques are needed to tackle these issues. Here, we address this multi-scalar problem by employing a novel predictive three-dimensional mathematical and computational model based on first-principle equations (conservation laws of physics) that describe mathematically the diffusion of cell substrates and other processes determining tumor mass growth and invasion. The model uses conserved variables to represent known determinants of glioma behavior, e.g., cell density and oxygen concentration, as well as biological functional relationships and parameters linking phenomena at different scales whose specific forms and values are hypothesized and calculated based on in vitro and in vivo experiments and from histopathology of tissue specimens from human gliomas. This model enables correlation of glioma morphology to tumor growth by quantifying interdependence of tumor mass on the microenvironment (e.g., hypoxia, tissue disruption) and on the cellular phenotypes (e.g., mitosis and apoptosis rates, cell adhesion strength). Once functional relationships between variables and associated parameter values have been informed, e.g., from histopathology or intra-operative analysis, this model can be used for disease diagnosis/prognosis, hypothesis testing, and to guide surgery and therapy. In particular, this tool identifies and quantifies the effects of vascularization and other cell-scale glioma morphological characteristics as predictors of tumor-scale growth and invasion

    Tumor Invasion of Salmonella enterica Serovar Typhimurium Is Accompanied by Strong Hemorrhage Promoted by TNF-α

    Get PDF
    BACKGROUND:Several facultative anaerobic bacteria with potential therapeutic abilities are known to preferentially colonize solid tumors after systemic administration. How they efficiently find and invade the tumors is still unclear. However, this is an important issue to be clarified when bacteria should be tailored for application in cancer therapy. METHODOLOGY/PRINCIPAL FINDINGS:We describe the initial events of colonization of an ectopic transplantable tumor by Salmonella enterica serovar Typhimurium. Initially, after intravenous administration, bacteria were found in blood, spleen, and liver. Low numbers were also detected in tumors associated with blood vessels as could be observed by immunohistochemistry. A rapid increase of TNF-alpha in blood was observed at that time, in addition to other pro-inflammatory cytokines. This induced a tremendous influx of blood into the tumors by vascular disruption that could be visualized in H&E stainings and quantified by hemoglobin measurements of tumor homogenate. Most likely, together with the blood, bacteria were flushed into the tumor. In addition, blood influx was followed by necrosis formation, bacterial growth, and infiltration of neutrophilic granulocytes. Depletion of TNF-alpha retarded blood influx and delayed bacterial tumor-colonization. CONCLUSION:Our findings emphasize similarities between Gram-negative tumor-colonizing bacteria and tumor vascular disrupting agents and show the involvement of TNF-alpha in the initial phase of tumor-colonization by bacteria

    Electrostatic phase separation: a review

    Get PDF
    The current understanding and developments in the electrostatic phase separation are reviewed. The literature covers predominantly two immiscible and inter-dispersed liquids following the last review on the topic some 15 years. Electrocoalescence kinetics and governing parameters, such as the applied field, liquid properties, drop shape and flow, are considered. The unfavorable effects, such as chain formation and partial coalescence, are discussed in detail. Moreover, the prospects of microfluidics platforms, non-uniform fields, coalescence on the dielectric surfaces to enhance the electrocoalescence rate are also considered. In addition to the electrocoalescence in water-in-oil emulsions the research in oil-in-oil coalescence is also discussed. Finally the studies in electrocoalescer development and commercial devices are also surveyed. The analysis of the literature reveals that the use of pulsed DC and AC electric fields is preferred over constant DC fields for efficient coalescence; but the selection of the optimum field frequency a priori is still not possible and requires further research. Some recent studies have helped to clarify important aspects of the process such as partial coalescence and drop–drop non-coalescence. On the other hand, some key phenomena such as thin film breakup and chain formation are still unclear. Some designs of inline electrocoalescers have recently been proposed; however with limited success: the inadequate knowledge of the underlying physics still prevents this technology from leaving the realm of empiricism and fully developing in one based on rigorous scientific methodology

    Electrocoalescence of water drop trains in oil under constant and pulsatile electric fields

    Get PDF
    This study addresses the effectiveness of constant and pulsed DC fields in promoting coalescence of dispersed water drops in an oil-continuous phase. For this purpose, a train of drops of relatively uniform size is injected into a stream of flowing sunflower oil. This stream is then admitted to a coalescing section, where an electric field is applied between a pair of ladder-shape bare electrodes. The capability of this device to enhance coalescence of droplets in a chain is investigated at different field intensities, frequencies and waveforms. The effect of the initial inter-droplet separation distance on the process performance is also addressed under constant DC fields. The dominant coalescence mechanism is found to be due to dipole–dipole interaction at low field strength, whereas electrophoresis becomes predominant at higher field strength. Experiments reveal the existence of an optimal frequency, where the average droplet size enlargement is maximized, especially at low field strengths. The droplet size at the outlet of the coalescer is also found to be dependent on the field waveform

    Application of prolonged microdialysis sampling in carboplatin-treated cancer patients

    Get PDF
    Purpose: To better understand the mechanisms underlying (in)sensitivity of tumors to anticancer drugs, assessing intra-tumor drug pharmacokinetics (PKs) could be important. We explored the feasibility of microdialysis in tumor tissue for multiple days in a clinical setting, using carboplatin as model drug. Methods: Plasma and microdialysate samples from tumor and adipose normal tissues were collected up to 47 h after dosing in eight carboplatin-treated patients with an accessible (sub)cutaneous tumor. Results: Pharmacokinetics were evaluable in tumor tissue in 6/8 patients and in adipose normal tissue in 3/8 patients. Concentration-time curves of unbound platinum in both the tissues followed the pattern of the curves in plasma, with exposure ratios of tissue versus plasma ranging from 0.64 to 1.46. Conclusions: Microdialysis can be successfully employed in ambulant patients for multiple days, which enables one to study tissue PK of anticancer drugs in normal and malignant tissues in more detail
    corecore