277 research outputs found

    Treatment of helicobacter pylori infection in atrophic gastritis

    Get PDF
    Helicobacter pylori (Hp) is a major human pathogen causing chronic, progressive gastric mucosal damage and is linked to gastric atrophy and cancer. Hp-positive individuals constitute the major reservoir for transmission of infection. There is no ideal treatment for Hp. Hp infection is not cured by a single antibiotic, and sometimes, a combined treatment with three or more antibiotics is ineffective. Atrophic gastritis (AG) is a chronic disease whose main features are atrophy and/or intestinal metaplasia of the gastric glands, which arise from long-standing Hp infection. AG is reportedly linked to an increased risk for gastric cancer, particularly when extensive intestinal metaplasia is present. Active or past Hp infection may be detected by conventional methods in about two-thirds of AG patients. By immunoblotting of sera against Hp whole-cell protein lysates, a previous exposure to Hp infection is detected in all AG patients. According to guidelines, AG patients with Hp positivity should receive eradication treatment. The goals of treatment are as follows: (1) Cure of infection, resolution of inflammation and normalization of gastric functions; (2) possible reversal of atrophic and metaplastic changes of the gastric mucosa; and (3) prevention of gastric cancer. An ideal antibiotic regimen for Hp should achieve eradication rates of approximately 90%, and complex multidrug regimens are required to reach this goal. Amongst the factors associated with treatment failure are high bacterial load, high gastric acidity, Hp strain, smoking, low compliance, overweight, and increasing antibiotic resistance. AG, when involving the corporal mucosa, is linked to reduced gastric acid secretion. At a non-acidic intra-gastric pH, the efficacy of the common treatment regimens combining proton pump inhibitors with one or more antibiotics may not be the same as that observed in patients with Hp gastritis in an acid-producing stomach. Although the efficacy of these therapeutic regimens has been thoroughly tested in subjects with Hp infection, there is a paucity of evidence in the subgroup of patients with AG. Bismuth-based therapy may be an attractive treatment in the specific setting of AG, and specific studies on the efficacy of bismuth-based therapies are needed in patients with AG

    Time trend occurrence of duodenal intraepithelial lymphocytosis and celiac disease in an open access endoscopic population

    Get PDF
    Background: Duodenal intraepithelial lymphocytosis (DIL) is a histological finding characterized by the increase of intraepithelial CD3T-lymphocytes over the normal value without villous atrophy, mostly associated to coeliac disease (CD), Helicobacter pylori (Hp) gastritis and autoimmune diseases. Objective: To assess the occurrence of DIL, CD and Hp gastritis in an endoscopic population over a 13 year period. Methods: From 2003 to 2015 we included adult patients who consecutively underwent oesophago-gastro-duodenoscopy (OGD) with duodenal biopsies assessing the overall and annual occurrence of DIL and CD and the prevalence of Hp gastritis. Results: 160 (2.3%) patients with DIL and 275 (3.9%) with CD were detected among 7001 patients. CD occurrence was higher from 2003 to 2011, while since 2012 DIL occurrence gradually increased significantly compared to CD (p = 0.03). DIL patients were more frequently female (p = 0.0006) and underwent OGD more frequently for dyspepsia (p = 0.002) and for indications not related to gastrointestinal symptoms than CD patients (p = 0.0003). Hp gastritis occurred similarly in CD and DIL patients but the latter had higher frequency of atrophic body gastritis (p = 0.005). Conclusions: DIL is a condition increasing in the general endoscopic population mainly diagnosed by chance. Concomitant gastric histological evaluation is able in one third of DIL patients to identify associated possible causes of DIL, such as Hp and atrophic gastritis

    Common Pitfalls in the Management of Patients with Micronutrient Deficiency. Keep in Mind the Stomach

    Get PDF
    Micronutrient deficiencies are relatively common, in particular iron and cobalamin deficiency, and may potentially lead to life-threatening clinical consequences when not promptly recognized and treated, especially in elderly patients. The stomach plays an important role in the homeostasis of some important hematopoietic micronutrients like iron and cobalamin, and probably in others equally important such as ascorbic acid, calcium, and magnesium. A key role is played by the corpus oxyntic mucosa composed of parietal cells whose main function is gastric acid secretion and intrinsic factor production. Gastric acid secretion is necessary for the digestion and absorption of cobalamin and the absorption of iron, calcium, and probably magnesium, and is also essential for the absorption, secretion, and activation of ascorbic acid. Several pathological conditions such as Helicobacter pylori-related gastritis, corpus atrophic gastritis, as well as antisecretory drugs, and gastric surgery may interfere with the normal functioning of gastric oxyntic mucosa and micronutrients homeostasis. Investigation of the stomach by gastroscopy plus biopsies should always be considered in the management of patients with micronutrient deficiencies. The current review focuses on the physiological and pathophysiological aspects of gastric acid secretion and the role of the stomach in iron, cobalamin, calcium, and magnesium deficiency and ascorbate homeostasis

    Brain computer tomography in critically ill patients -- a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain computer tomography (brain CT) is an important imaging tool in patients with intracranial disorders. In ICU patients, a brain CT implies an intrahospital transport which has inherent risks. The proceeds and consequences of a brain CT in a critically ill patient should outweigh these risks. The aim of this study was to critically evaluate the diagnostic and therapeutic yield of brain CT in ICU patients.</p> <p>Methods</p> <p>In a prospective observational study data were collected during one year on the reasons to request a brain CT, expected abnormalities, abnormalities found by the radiologist and consequences for treatment. An “expected abnormality” was any finding that had been predicted by the physician requesting the brain CT. A brain CT was “diagnostically positive”, if the abnormality found was new or if an already known abnormality was increased. It was “diagnostically negative” if an already known abnormality was unchanged or if an expected abnormality was not found. The treatment consequences of the brain CT, were registered as “treatment as planned”, “treatment changed, not as planned”, “treatment unchanged”.</p> <p>Results</p> <p>Data of 225 brain CT in 175 patients were analyzed. In 115 (51%) brain CT the abnormalities found were new or increased known abnormalities. 115 (51%) brain CT were found to be diagnostically positive. In the medical group 29 (39%) of brain CT were positive, in the surgical group 86 (57%), <it>p</it> 0.01. After a positive brain CT, in which the expected abnormalities were found, treatment was changed as planned in 33%, and in 19% treatment was changed otherwise than planned.</p> <p>Conclusions</p> <p>The results of this study show that the diagnostic and therapeutic yield of brain CT in critically ill patients is moderate. The development of guidelines regarding the decision rules for performing a brain CT in ICU patients is needed.</p

    Iron deficiency anemia caused by nonspecific (idiopathic) small bowel ulceration: an uncommon presentation of an uncommon disease.

    Get PDF
    Ulcers of the small bowel are rare, and in most cases are due to infections, inflammatory bowel diseases, malignancies or drugs. When none of these causes is recognized, they are classified as 'nonspecific' or idiopathic. Such lesions are uncommon, and in most cases present with occlusion. A case of a middle-aged woman with iron deficiency anemia due to occult bleeding, with negative gastroscopy and colonoscopy is presented. The diagnosis of a small bowel pathology resembling Crohn's disease was made by small bowel follow through and small intestine contrast ultrasonography. An ileal ulcer was identified at surgery, and after resection the patient experienced a stable recovery from the anemia without ulcer recurrence. Neither histology nor clinical or biochemical features suggested the diagnosis of an inflammatory bowel disease. Other possible causes were unlikely and the lesion was therefore diagnosed as idiopathic. This report also focuses on the need and the modality to investigate the small bowel in iron deficiency anemia patients

    Root morphology and seed and leaf ionomic traits in a Brassica napus L. diversity panel show wide phenotypic variation and are characteristic of crop habit

    Get PDF
    Background: Mineral nutrient uptake and utilisation by plants are controlled by many traits relating to root morphology, ion transport, sequestration and translocation. The aims of this study were to determine the phenotypic diversity in root morphology and leaf and seed mineral composition of a polyploid crop species, Brassica napus L., and how these traits relate to crop habit. Traits were quantified in a diversity panel of up to 387 genotypes: 163 winter, 127 spring, and seven semiwinter oilseed rape (OSR) habits, 35 swede, 15 winter fodder, and 40 exotic/unspecified habits. Root traits of 14 d old seedlings were measured in a ‘pouch and wick’ system (n = ~24 replicates per genotype). The mineral composition of 3–6 rosette-stage leaves, and mature seeds, was determined on compost-grown plants from a designed experiment (n = 5) by inductively coupled plasma-mass spectrometry (ICP-MS). Results: Seed size explained a large proportion of the variation in root length. Winter OSR and fodder habits had longer primary and lateral roots than spring OSR habits, with generally lower mineral concentrations. A comparison of the ratios of elements in leaf and seed parts revealed differences in translocation processes between crop habits, including those likely to be associated with crop-selection for OSR seeds with lower sulphur-containing glucosinolates. Combining root, leaf and seed traits in a discriminant analysis provided the most accurate characterisation of crop habit, illustrating the interdependence of plant tissues. Conclusions: High-throughput morphological and composition phenotyping reveals complex interrelationships between mineral acquisition and accumulation linked to genetic control within and between crop types (habits) in B. napus. Despite its recent genetic ancestry (<10 ky), root morphology, and leaf and seed composition traits could potentially be used in crop improvement, if suitable markers can be identified and if these correspond with suitable agronomy and quality traits

    Nuclear localised more sulphur accumulation1 epigenetically regulates sulphur homeostasis in Arabidopsis thaliana

    Get PDF
    Sulphur (S) is an essential element for all living organisms. The uptake, assimilation and metabolism of S in plants are well studied. However, the regulation of S homeostasis remains largely unknown. Here, we report on the identification and characterisation of the more sulphur accumulation1 (msa1-1) mutant. The MSA1 protein is localized to the nucleus and is required for both S adenosylmethionine (SAM) production and DNA methylation. Loss of function of the nuclear localised MSA1 leads to a reduction in SAM in roots and a strong S-deficiency response even at ample S supply, causing an over- accumulation of sulphate, sulphite, cysteine and glutathione. Supplementation with SAM suppresses this high S phenotype. Furthermore, mutation of MSA1 affects genome-wide DNA methylation, including the methylation of S-deficiency responsive genes. Elevated S accumulation in msa1-1 requires the increased expression of the sulphate transporter genes SULTR1;1 and SULTR1;2 which are also differentially methylated in msa1-1. Our results suggest a novel function for MSA1 in the nucleus in regulating SAM biosynthesis and maintaining S homeostasis epigenetically via DNA methylation

    Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants

    Get PDF
    Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]
    corecore