8,770 research outputs found
Rotation periods of late-type stars in the young open cluster IC 2602
We present the results of a monitoring campaign aimed at deriving rotation
periods for a representative sample of stars in the young (30 Myr) open cluster
IC 2602. Rotation periods were derived for 29 of 33 stars monitored. The
periods derived range from 0.2d (one of the shortest known rotation periods of
any single open cluster star) to about 10d (which is almost twice as long as
the longest period previously known for a cluster of this age). We are able to
confirm 8 previously known periods and derive 21 new ones, delineating the long
period end of the distribution. Despite our sensitivity to longer periods, we
do not detect any variables with periods longer than about 10d. The combination
of these data with those for IC 2391, an almost identical cluster, leads to the
following conclusions:
1) The fast rotators in a 30 Myr cluster are distributed across the entire
0.5 < B-V < 1.6 color range.
2) 6 stars in our sample are slow rotators, with periods longer than 6d.
3) The amplitude of variability depends on both the color and the period. The
dependence on the latter might be important in understanding the selection
effects in the currently available rotation period database and in planning
future observations.
4) The interpretation of these data in terms of theoretical models of
rotating stars suggests both that disk-interaction is the norm rather than the
exception in young stars and that disk-locking times range from zero to a few
Myr.Comment: 23 pages, 8 figures, accepted for publication in the Astrophysical
Journa
Evidence for nonhadronic degrees of freedom in the transverse mass spectra of kaons from relativistic nucleus-nucleus collisions?
We investigate transverse hadron spectra from relativistic nucleus-nucleus
collisions which reflect important aspects of the dynamics - such as the
generation of pressure - in the hot and dense zone formed in the early phase of
the reaction. Our analysis is performed within two independent transport
approaches (HSD and UrQMD) that are based on quark, diquark, string and
hadronic degrees of freedom. Both transport models show their reliability for
elementary as well as light-ion (C+C, Si+Si) reactions. However, for
central Au+Au (Pb+Pb) collisions at bombarding energies above 5
AGeV the measured transverse mass spectra have a larger
inverse slope parameter than expected from the calculation. Thus the pressure
generated by hadronic interactions in the transport models above 5
AGeV is lower than observed in the experimental data. This finding shows
that the additional pressure - as expected from lattice QCD calculations at
finite quark chemical potential and temperature - is generated by strong
partonic interactions in the early phase of central Au+Au (Pb+Pb) collisions.Comment: 4 pages, 3 figures,discussions extended, references added, to be
published in Phys. Rev. Let
Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena Xray observatory
Athena is a space-based X-ray observatory intended for exploration of the hot
and energetic universe. One of the science instruments on Athena will be the
X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer,
based on a large cryogenic imaging array of Transition Edge Sensors (TES) based
microcalorimeters operating at a temperature of 100mK. The imaging array
consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a
field of view with a diameter of of 5 arc minutes. Multiplexed readout of the
cryogenic microcalorimeter array is essential to comply with the cooling power
and complexity constraints on a space craft. Frequency domain multiplexing has
been under development for the readout of TES-based detectors for this purpose,
not only for the X-IFU detector arrays but also for TES-based bolometer arrays
for the Safari instrument of the Japanese SPICA observatory. This paper
discusses the design considerations which are applicable to optimise the
multiplex factor within the boundary conditions as set by the space craft. More
specifically, the interplay between the science requirements such as pixel
dynamic range, pixel speed, and cross talk, and the space craft requirements
such as the power dissipation budget, available bandwidth, and electromagnetic
compatibility will be discussed
An ArcGIS Tool for Modeling the Climate Envelope with Feed-Forward ANN
This paper is about the development and the application of an ESRI ArcGIS tool which implements multi-layer, feed-forward artificial neural network (ANN) to study the climate envelope of species. The supervised learning is achieved by backpropagation algorithm. Based on the distribution and the grids of the climate (and edaphic data) of the reference and future periods the tool predicts the future potential distribution of the studied species. The trained network can be saved and loaded. A modeling result based on the distribution of European larch (Larix decidua Mill.) is presented as a case study
Casimir force between two ideal-conductor walls revisited
The high-temperature aspects of the Casimir force between two neutral
conducting walls are studied. The mathematical model of "inert" ideal-conductor
walls, considered in the original formulations of the Casimir effect, is based
on the universal properties of the electromagnetic radiation in the vacuum
between the conductors, with zero boundary conditions for the tangential
components of the electric field on the walls. This formulation seems to be in
agreement with experiments on metallic conductors at room temperature. At high
temperatures or large distances, at least, fluctuations of the electric field
are present in the bulk and at the surface of a particle system forming the
walls, even in the high-density limit: "living" ideal conductors. This makes
the enforcement of the inert boundary conditions inadequate. Within a hierarchy
of length scales, the high-temperature Casimir force is shown to be entirely
determined by the thermal fluctuations in the conducting walls, modelled
microscopically by classical Coulomb fluids in the Debye-H\"{u}ckel regime. The
semi-classical regime, in the framework of quantum electrodynamics, is studied
in the companion letter by P.R.Buenzli and Ph.A.Martin, cond-mat/0506363,
Europhys.Lett.72, 42 (2005).Comment: 7 pages.One reference updated. Domain of validity of eq.(11)
correcte
Building the cosmic distance scale: from Hipparcos to Gaia
Hipparcos, the first ever experiment of global astrometry, was launched by
ESA in 1989 and its results published in 1997 (Perryman et al., Astron.
Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho
catalogues, ESA SP-1200, 1997). A new reduction was later performed using an
improved satellite attitude reconstruction leading to an improved accuracy for
stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys.
439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007).
The Hipparcos Catalogue provided an extended dataset of very accurate
astrometric data (positions, trigonometric parallaxes and proper motions),
enlarging by two orders of magnitude the quantity and quality of distance
determinations and luminosity calibrations. The availability of more than 20000
stars with a trigonometric parallax known to better than 10% opened the way to
a drastic revision of our 3-D knowledge of the solar neighbourhood and to a
renewal of the calibration of many distance indicators and age estimations. The
prospects opened by Gaia, the next ESA cornerstone, planned for launch in June
2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more
dramatic: a billion objects with systematic and quasi simultaneous astrometric,
spectrophotometric and spectroscopic observations, about 150 million stars with
expected distances to better than 10%, all over the Galaxy. All stellar
distance indicators, in very large numbers, will be directly measured,
providing a direct calibration of their luminosity and making possible detailed
studies of the impacts of various effects linked to chemical element
abundances, age or cluster membership. With the help of simulations of the data
expected from Gaia, obtained from the mission simulator developed by DPAC, we
will illustrate what Gaia can provide with some selected examples.Comment: 16 pages, 16 figures, Conference "The Fundamental Cosmic Distance
scale: State of the Art and the Gaia perspective, 3-6 May 2011, INAF,
Osservatorio Astronomico di Capodimonte, Naples. Accepted for publication in
Astrophysics & Space Scienc
Representations of the exceptional and other Lie algebras with integral eigenvalues of the Casimir operator
The uniformity, for the family of exceptional Lie algebras g, of the
decompositions of the powers of their adjoint representations is well-known now
for powers up to the fourth. The paper describes an extension of this
uniformity for the totally antisymmetrised n-th powers up to n=9, identifying
(see Tables 3 and 6) families of representations with integer eigenvalues
5,...,9 for the quadratic Casimir operator, in each case providing a formula
(see eq. (11) to (15)) for the dimensions of the representations in the family
as a function of D=dim g. This generalises previous results for powers j and
Casimir eigenvalues j, j<=4. Many intriguing, perhaps puzzling, features of the
dimension formulas are discussed and the possibility that they may be valid for
a wider class of not necessarily simple Lie algebras is considered.Comment: 16 pages, LaTeX, 1 figure, 9 tables; v2: presentation improved, typos
correcte
Correlated errors in Hipparcos parallaxes towards the Pleiades and the Hyades
We show that the errors in the Hipparcos parallaxes towards the Pleiades and
the Hyades open clusters are spatially correlated over angular scales of 2 to 3
deg, with an amplitude of up to 2 mas. This correlation is stronger than
expected based on the analysis of the Hipparcos catalog. We predict the
parallaxes of individual cluster members, pi_pm, from their Hipparcos proper
motions, assuming that all cluster members have the same space velocity. We
compare pi_pm with their Hipparcos parallaxes, pi_Hip, and find that there are
significant spatial correlations in pi_Hip. We derive a distance modulus to the
Pleiades of 5.58 +- 0.18 mag using the radial-velocity gradient method. This
value, agrees very well with the distance modulus of 5.60 +- 0.04 mag
determined using the main-sequence fitting technique, compared with the value
of 5.33 +- 0.06 inferred from the average of the Hipparcos parallaxes of the
Pleiades members. We show that the difference between the main-sequence fitting
distance and the Hipparcos parallax distance can arise from spatially
correlated errors in the Hipparcos parallaxes of individual Pleiades members.
Although the Hipparcos parallax errors towards the Hyades are spatially
correlated in a manner similar to those of the Pleiades, the center of the
Hyades is located on a node of this spatial structure. Therefore, the parallax
errors cancel out when the average distance is estimated, leading to a mean
Hyades distance modulus that agrees with the pre-Hipparcos value. We speculate
that these spatial correlations are also responsible for the discrepant
distances that are inferred using the mean Hipparcos parallaxes to some open
clusters. Finally, we note that our conclusions are based on a purely geometric
method and do not rely on any models of stellar isochrones.Comment: 33 pages including 10 Figures, revised version accepted for
publication in Ap
Phase Coexistence of a Stockmayer Fluid in an Applied Field
We examine two aspects of Stockmayer fluids which consists of point dipoles
that additionally interact via an attractive Lennard-Jones potential. We
perform Monte Carlo simulations to examine the effect of an applied field on
the liquid-gas phase coexistence and show that a magnetic fluid phase does
exist in the absence of an applied field. As part of the search for the
magnetic fluid phase, we perform Gibbs ensemble simulations to determine phase
coexistence curves at large dipole moments, . The critical temperature is
found to depend linearly on for intermediate values of beyond the
initial nonlinear behavior near and less than the where no
liquid-gas phase coexistence has been found. For phase coexistence in an
applied field, the critical temperatures as a function of the applied field for
two different are mapped onto a single curve. The critical densities
hardly change as a function of applied field. We also verify that in an applied
field the liquid droplets within the two phase coexistence region become
elongated in the direction of the field.Comment: 23 pages, ReVTeX, 7 figure
- …
