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� This article is about the development and application of an ESRI ArcGIS tool that implements
a multilayer, feed-forward artificial neural network (ANN) to study the climate envelopes of species.
The supervised learning is achieved by a backpropagation algorithm. Based on the distribution and
the grids of the climate (and edaphic data) of the reference and future periods, the tool predicts the
future potential distribution of the studied species. The trained network can be saved and loaded.
A modeling result based on the distribution of European larch (Larix decidua Mill.) is presented as
a case study.

INTRODUCTION

The impact of climate change on the distribution of species can be mod-
eled with climate envelope modeling (CEM), also known as niche-based
modeling or correlative modeling (Box 1981; Hijmans and Graham 2006).
The method is about predicting responses of species to climate change
by drawing an envelope around the domain of climatic variables where
the given species has been recently found and then identifying areas pre-
dicted to fall within that domain under future scenarios (Ibáñez et al. 2006).
It hypothesizes that (both present and future) distributions are dependent

Address correspondence to Ákos Bede-Fazekas, Department of Garden and Open Space Design,
Corvinus University of Budapest, Villányi út 29-43, H-1118 Budapest, Hungary. E-mail: bfakos@gmail.com
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234 Á. Bede-Fazekas et al.

mostly on the climatic variables (Czúcz 2010). Compared to mechanistic
models, CEM tries to find statistical correlations between climate and dis-
tribution of species (Elith and Leathwick 2009; Guisan and Zimmermann
2000), and models the future temporal correspondence based on the
present spatial correspondence between the variables (Pickett 1989). A key
advantage of CEM is that there is no requirement for detailed physiological
data of species (Pearson et al. 2002).

Various methods can be used to determine the climate envelope, includ-
ing simple regression, distance-based methods, genetic algorithms (GAs),
and artificial neural networks (ANNs; Ibáñez et al. 2006). The last belong to
artificial intelligence (AI) methods that are used less frequently in ecology
than statistical approaches because the AI models are considered to be less
interpretable and often are called “black-boxes” (Elith et al. 2008). A review
of the various modeling methods is provided by Guisan and Zimmermann
(2000). ANN in CEMs can be mentioned as a method that is relatively new
but widely applied (Carpenter et al. 1999; Hilbert and Van Den Muyzenberg
1999; Özesmi and Özesmi 1999; Hilbert and Ostendorf 2001; Pearson et al.
2002; Özesmi et al. 2006; Harrison et al. 2010; Ogawa-Onishi et al. 2010).
ANN-based models are more powerful than multiple regression models
when modeling nonlinear relationships (Lek et al. 1996). ANNs have proven
to be advantageous in many fields of science wherein complex datasets need
to be analyzed (Van Leeuwen et al. 2012).

The concept of ANN is inspired by the structure and operation of the
nervous system. ANN is a machine learning system that has computational
units, called neurons, simplification of the human neurons. In general, neu-
rons are organized to lie in layers and are densely connected to each other.
ANN is able to learn and recognize patterns such as climatic patterns that
can be found within the distribution of a species. Detailed discussion of the
method is provided by Picton (2000) and Van Leeuwen (2012).

PROGRAM DESCRIPTION

The program provides an AI method for CEM in an ESRI ArcGIS1

10.0 environment. The program was implemented in Python and is freely
accessible through the ESRI tool center (ArcGIS 2013). Based on the dis-
tribution (which serves as the base of the presence/absence calculations)
and the grids of the climatic, edaphic, topographic, and other data of the
reference and future periods (which provide the predictors, or explanatory
variables, for the learning and projection phase), the program learns the cli-
matic patterns found within the distribution of the studied species and then
predicts the future potential distribution (makes projection). The program

1ArcGIS is a trademark product of the Environmental Systems Research Institute (ESRI) Inc.
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ArcGIS Tool for Modeling the Climate Envelope 235

implements a multilayer, feed-forward ANN to learn the climate envelope of
species. Sigmoid, tangent hyperbolic activation function is used. The multi-
layer topology includes (1) one input layer with the same number of neurons
as the number of the given input predictor variables; (2) several hidden lay-
ers (the number of the hidden layers and the neurons of the hidden layers
can be set); (3) and one output layer with one neuron that is able to estimate
the presence/absence in a certain geological point (a point of the grid).
The supervised learning is achieved by a backpropagation algorithm with
adjustable learning rate and momentum factor. Multiple predictions can be
made in one procedure. The trained network can be saved to and loaded
from a file, therefore, training and prediction can be separated.

The program has a linear run in a temporal term with five distinguished
phases: verifying, data preprocessing, training, projecting , and processing phases;
see Figure 1. The verifying phase verifies the input data and the param-
eters formally and in terms of the content. In case of any problem, the
program shows an informative error message and terminates. The data pre-
processing and training phases are done if the program was started with
the parameter “Should training be done?” being checked. During the data
preprocessing, the climatic data are studentized (standardized) for faster
training; presence/absence is calculated for every geographic point, and the
training pattern is created. Either the entire grid of the reference period can

Initialization

Main program

Subprogram

of data

verification

User

Subprogram 

of data

pre-

processing

Subprogram

of training

the ANN

Subprogram

of projection

Subprogram of Artificial Neural Network

Subprogram

of

processing

FIGURE 1 The logic of the program: the subprogram’s connections to each other and to the user.
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236 Á. Bede-Fazekas et al.

be used for training or a part of it can be selected randomly. In the training
phase, the core of the program (the neural network) learns until one of the
previously set three termination conditions is satisfied (see them in the next
section).

The projecting and processing phases are done if the program was
started with the parameter “Should projection be done?” being checked.
During the projection phase the program iterates through the points of
the projection grid(s) and the trained neural network makes a projection.
The projection values, typically within the (0;1) interval, are discretized to
binary presence/absence data by a manually specified threshold. They can
be preserved in a new column of the projection grid. The processing phase
is responsible for drawing the potential distribution(s) based on the pro-
jection(s) of presence/absence. It is achieved by creating and aggregating
Thiessen polygons (Voronoi cells). Detailed structure of the program can be
seen in Figure 2.

APPLICATION

The program can be run (1) as a tool of the ArcToolbox either manually
or by Model Builder; (2) or as a script from the Python Window or from
other scripts. The program needs several inputs to be given and starting
parameters to be set. All the inputs and parameters can be set in the starting
window of the tool (Figure 3) or as parameters of the function. After the pro-
gram has been started, the user cannot affect the running of the program.
In the tool window, the user specifies whether both training and projection
should be done or only one or the other. In the case of the training-only
or the training-and-prediction mode, the trained network can be saved to a
given file. In the case of prediction-only mode, the network previously saved
can be loaded from the given file.

In the case of training, the user should set the parameters of the ANN,
In other words, the number of hidden layers, the number of neurons per
hidden layer, the learning rate, and the momentum factor. A point-type
ESRI shapefile (grid) containing the climatic parameters in columns should
be loaded as input of the climatic data of the reference period (refer-
ence grid). The grid should contain only the climatic parameters and the
FID/OID/Shape fields. The user should previously select the appropriate
column to avoid high collinearity (detailed information about the phe-
nomenon is given by Dormann et al. 2013). Another input is the distribution
of the species formatted as ESRI polygon-type shapefile (reference distri-
bution). The program bounds the reference distribution to the reference
grid. Also, the number of training points and the termination conditions of
the training can be set. If no training point number is given, the program
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ArcGIS Tool for Modeling the Climate Envelope 237

exit

userOutput.Add
Error

userOutput.Add
Warning

makeArrayAll preProcess

delTempColumn

saveANN

makeArray
Random

studentization

roundFunction

ANN.derivActFn ANN.update

ANN.back
Propagate

ANN.project

ANN.actFn

loadANNproject

processProjected

Verify.verifyIf
ShouldTrain

ANN.loadANN.saveANN.train

Verify.verifyIf
ShouldProject

Verify.verify
ReferenceGrid

Verify.verify
NumberOfLayers

Verify.verify
NumberOfNeurons

PerLayer

Verify.verify
TrainingPoints

Verify.verify
Termination

Verify.verify
LearningRate

Verify.verify
MomentumFactor

Verify.verify
ProjectionGrids

Verify.verifyIs
NewColumn
ToPreserve

Verify.verify
Projection

Distributions

setupANNDistri
bution

Verify.verify
SaveANN

Verify.verify
Reference

Distribution

main

ANNDistribution

train

userOutput.Add
Message

FIGURE 2 The connection of the program’s functions (userOutput.AddMessage function is excluded,
because almost all the other functions call it). The communication toward the user is displayed with
dashed lines.

uses the entire reference grid as a training pattern. The optional termina-
tion conditions are (1) the number of iterations; (2) the error value to be
reached; (3) the training duration in milliseconds.

In the case of projecting, the user should open one or more projec-
tion grid(s) with similar structure to that of the reference grid. The column
order should be the equivalent of the order within the reference grid. Bias
correction of the projection grids should be previously done if necessary.
A checkbox enables setting the calculated presence/absence data, as 1/0 val-
ues placed in a new temporary column, if they should be preserved in the
projection grids. The user should select as many projection distributions as
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238 Á. Bede-Fazekas et al.

FIGURE 3 The parameterization of the tool at launching.

the number of the projection grids. The program bounds the first grid to
the first distribution, and so on. Nonexistent projection distributions are cre-
ated, while the existing ones are overwritten. The output of the program is
the list of the projection distributions that can be handled by Model Builder
or by other scripts.

CASE STUDY OF LARIX DECIDUA

Aim

A modeling process, including the input data types, the selected param-
eters, and the modeling result, based on the distribution of European larch
(Larix decidua Mill.) is presented as a case study. Although using a more
sophisticated CEM and more adequate predictor variables (e.g., soil type,
exposure, potential evapotranspiration) could reflect more on the demand
of the species, the only aim of the case study was to show how easy the
application of the tool is.
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ArcGIS Tool for Modeling the Climate Envelope 239

Data Sources

The current (latest update was achieved in 2008) continuous distribu-
tion map of European larch (Larix decidua Mill.) was derived from the
EUFORGEN digital area database (Euforgen 2009), whereas the discrete
(fragmented) observations were ignored. The distribution from 2009 was
bound to the reference period of the climate data, because the studied
species has a long life cycle and can slowly adapt to the changing climate
(Nadezda et al. 2006). Larix decidua is one of the most climate-sensitive tree
species of the Alps (Carrer and Urbinati 2006).

The climatic data were gained from the REMO regional climate model
(Hewitt and Griggs 2004); the grid had a 25-km horizontal resolution.
The model REMO is based on the ECHAM5 global climate model and
uses the Intergovernmental Panel on Climate Change Special Report on
Emissions Scenarios(IPCC SRES) scenario called A1B. The reference period
was 1961–1990, the two prediction periods were 2011–2040 and 2041–2070.
The entire European Continent is within the domain of REMO; we used,
however, only a part of the grid (25,724 of the 32,300 points). Five cli-
matic predictors were selected, which were averaged in the three periods.
June temperature and precipitation were found to be the best predictors of
larch growth in the Southern Alps (Carrer and Urbinati 2006). Additionally,
mean temperature of January, minimum temperature of September, and
precipitation sum of January were used as explanatory variables.

Input Parameters

The selected input parameters were the following. The neural network
had 5 hidden layers with 15 neurons per layer. The learning rate and the
momentum factor were set to be 0.1 and 0.01, respectively. The entire ref-
erence grid was given to the network to be used for training. Only one
termination condition was set: the supervised training should be terminated
after the tenth iteration.

Result and Discussion

An extract of modeling results can be seen in Figure 4. The mod-
eled potential distributions include parts of Norway and Sweden, which are
not displayed. The modeled potential distribution for the reference period
shows great similarity to the observed distribution. Although more similarity
could be reached in the case of a longer training phase, that could result in
an overfitted model. The Cohen’s kappa (Cohen 1960) value of the model
result for the reference period was 0.4905.

The ratio of the presence data in the entire grid was originally 1.89%
(486/25,724 points). The modeled ratios in 1961–1990, 2011–2040, and
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240 Á. Bede-Fazekas et al.

FIGURE 4 Current distribution (dotted), modeled potential distribution in the reference period (grey),
and predicted potential distribution in the periods of 2011–2040 (SW–NE hatch) and 2041–2070 (NW–
SE hatch) of European larch (Larix decidua Mill.), zoomed to Central Europe.

2041–2070 were 2.97, 2.60, and 2.40, respectively. The retraction of the dis-
tribution in the Northern Alps is predicted. The model of our previous
research (Bede-Fazekas 2013) resulted in much larger potential distribution
for the reference period and predicted more significant retraction in the
Alps.

SUMMARY

The application, applied methods, and example model results of the
newly developed ANN Distribution ArcGIS tool are reported to introduce
this tool to the community of ecologists. The application of the program is
simple because no data transformation, presence/absence calculation, and
data migration to statistical software are needed. The program was optimized
to the typical data formats of CEM. As far as the authors know, the presented
program is the first ANN-based simple CEM tool written to ArcGIS.

Although we stressed the benefits of the tool, we should not forget to
mention the challenges. ANN is a black-box method, which is not able to
help the ecologists to understand the underlying processes and factors that
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ArcGIS Tool for Modeling the Climate Envelope 241

drive the distribution of species; the method can be applied specifically for
modeling. This version of the tool lacks automatic parameter setting and
regularization scheme, which could prevent the model from becoming over-
fitted (no statistical measures are calculated during the training phase and,
therefore, no automatic calibration can be achieved).

The concept and aim of the program are complex issues and might
include many potential developing targets. The main effort for the future
version of this program (1) would handle probabilities rather than (or in
addition to) binary presence/absences; (2) would continuously model to the
reference period to calculate ROC/AUC or Cohen’s kappa values and apply
them for early stopping regularization (calibration); (3) would dynamically
change the discretization boundary; (4) and would optimize the projecting
and processing phases to multicore processors.

FUNDING

ArcGIS is a trademark product of the Environmental Systems Research
Institute (ESRI) Inc. The research was supported by the project TÁMOP-
4.2.1/B-09/1/KMR-2010-0005 and TÁMOP 4.2.2.A-1/1/KONV-2012-0064.
The ENSEMBLES data used in this work was funded by the EU
FP6 Integrated Project ENSEMBLES (Contract number 505539) whose
support is gratefully acknowledged.

REFERENCES

ArcGIS. 2013. ANNDistribution: A tool for modeling the climate envelope with feed-forward artificial neural network.
Available at www.arcgis.com/home/item.html?id=2c6a49d147b94503b28ff6342e84b4be (accessed
October 6, 2013).

Bede-Fazekas, Á., 2013. Negative impact of climate change on the distribution of some conifers.
Hadtudomány 23(Suppl.):234–243.

Box, E. O., 1981. Macroclimate and plant forms: An introduction to predictive modelling in phytogeography. The
Hague: Dr. W. Junk.

Carpenter, G. A., S. Gopal, S. Macomber, S. Martens, C. E. Woodcock, and J. Franklin. 1999. A neural
network method for efficient vegetation mapping. Remote Sensing of the Environment 70(3):326–338.

Carrer, M., and C. Urbinati. 2006. Long-term change in the sensitivity of tree-ring growth to climate
forcing in Larix decidua. New Phytologist 170(4):861–872.

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement
20(1):37–46.

Czúcz, B., 2010. Modelling the impact of climate change on natural habitats in Hungary (PhD Thesis, Corvinus
University of Budapest, Budapest, Hungary).

Dormann, C. F., J. Elith, S. Bacher, C. Buchmann, G. Carl, G. Carré, J. R. García Marquéz, B. Gruber, B.
Lafourcade, P. J. Leitão, T. Münkemüller, C. McClean, P. E. Osborne, B. Reineking, B. Schröder, A.
K. Skidmore, D. Zurell, and S. Lautenbach. 2013. Collinearity: A review of methods to deal with it
and a simulation study evaluating their performance. Ecography 36(1):27–46.

Elith, J., and J. R. Leathwick. 2009. Species distribution models: Ecological explanation and prediction
across space and time. Annual Review of Ecology, Evolution, and Systematics 40(1):677–697.

Elith, J., J. R. Leathwick, and T. Hastie, 2008. A working guide to boosted regression trees. Journal of
Animal Ecology 77(4):802–813.

D
ow

nl
oa

de
d 

by
 [

Á
ko

s 
B

ed
e-

Fa
ze

ka
s]

 a
t 1

0:
55

 0
7 

A
pr

il 
20

15
 

www.arcgis.com/home/item.html?id=2c6a49d147b94503b28ff6342e84b4be


242 Á. Bede-Fazekas et al.

Euforgen, 2009. Distribution map of Europaean larch (Larix decidua). Bioversity International, Rome,
Italy. www.euforgen.org/distribution_maps.html (accessed April 1, 2013).

Guisan, A., and N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological
Modelling 135(2–3):147–186.

Harrison, S., E. I. Damschen, and J. B. Grace. 2010. Ecological contingency in the effects of cli-
matic warming on forest herb communities. Proceedings of the National Academy of Sciences USA.
107(45):19362–19367.

Hewitt, C. D., and D. J. Griggs. 2004. Ensembles-based predictions of climate changes and their impacts.
Eos 85(52):566.

Hijmans, R. J., and C. H. Graham. 2006. The ability of climate envelope models to predict the effect of
climate change on species distributions. Global Change Biology 12(12):2272–2281.

Hilbert, D. W., and B. Ostendorf. 2001. The utility of artificial neural networks for modelling the distri-
bution of vegetation in past, present and future climates. Ecological Modelling 146(1–3):311–327.

Hilbert, D. W., and J. Van Den Muyzenberg. 1999. Using an artificial neural network to characterize the
relative suitability of environments for forest types in a complex tropical vegetation mosaic. Diversity
and Distributions 5(6):263–274.

Ibáñez, I., J. S. Clark, M. C. Dietze, K. Feeley, M. Hersh, S. Ladeau, A. Mcbride, N. E. Welch, and M. S.
Wolosin. 2006. Predicting biodiversity change: outside the climate envelope, beyond the species-
area curve. Ecology 87(8):1896–1906.

Lek, S., M. Delacoste, P. Baran, I. Dimopoulos, J. Lauga, and S. Aulagnier. 1996. Application of neural
networks to modelling non linear relationships in ecology. Ecological Modelling 90(1):39–52.

Nadezda, M. T., E. R. Gerald, and I. P. Elena. 2006. Impacts of climate change on the distribution of Larix
spp. and Pinus sylvestris and their climatypes in Siberia. Mitigation and Adaptation Strategies for Global
Change 11(4):861–882.

Ogawa-Onishi, Y., P. M. Berry, and N. Tanaka. 2010. Assessing the potential impacts of climate change
and their conservation implications in Japan: A case study of conifers. Biological Conservation
143(7):1728–1736.

Özesmi, S. L., and U. Özesmi. 1999. An artificial neural network approach to spatial habitat modelling
with interspecific interaction. Ecological Modelling 116(1):15–31.

Özesmi, S. L., C. O. Tan, and U. Özesmi. 2006, Methodological issues in building, training, and testing
artificial neural networks in ecological applications. Ecological Modelling 195(1–2):83–93.

Pearson, R. G., T. P. Dawson, P. M. Berry, and P. A. Harrison. 2002. SPECIES: A spatial evaluation of
climate impact on the envelope of species. Ecological Modelling 154(3):289–300.

Pickett, S. T. A1989. Space-for-time substitution as an alternative to long-term studies. In Long-term studies
in ecology: approaches and alternatives. ed. G. E. Likens, 110–135. New York, NY, USA: Springer.

Picton, P. D. 2000. Neural networks. Basingstoke, UK: Palgrave Macmillan.
Van Leeuwen, B. 2012. Artificial neural networks and geographic information systems for inland excess water

classification (PhD Thesis, University of Szeged, Szeged, Hungary).
Van Leeuwen, B., G. Mezősi, Z. Tobak, J. Szatmári, and K. Barta. 2012. Identification of inland excess

water floodings using an artificial neural network. Carpathian Journal of Earth and Environmental
Sciences 7(4):173–180.D

ow
nl

oa
de

d 
by

 [
Á

ko
s 

B
ed

e-
Fa

ze
ka

s]
 a

t 1
0:

55
 0

7 
A

pr
il 

20
15

 

www.euforgen.org/distribution_maps.html

	ABSTRACT
	INTRODUCTION
	PROGRAM DESCRIPTION
	APPLICATION
	CASE STUDY OF    LARIX DECIDUA   
	Aim
	Data Sources
	Input Parameters
	Result and Discussion

	SUMMARY
	FUNDING
	REFERENCES

