
APCol Systems with Teams

Lucie Ciencialová, Luděk Cienciala, and Erzsébet Csuhaj-Varjú

1 Institute of Computer Science
and

Research Institute of the IT4Innovations Centre of Excellence,
Silesian University in Opava, Czech Republic

{lucie.ciencialova,ludek.cienciala}@fpf.slu.cz
2 Department of Algorithms and Their Applications, Faculty of Informatics

ELTE Eötvös Loránd University, Budapest, Hungary,
Pázmány Péter sétány 1/c, 1117

csuhaj@inf.elte.hu

Abstract. In this paper, we investigate the possibility of “going be-
yond” Turing in the terms of Automaton-like P Colonies (APCol systems,
for short), variants of P colonies processing strings as their environments.
We use the notion of teams of agents as a restriction for the maximal
parallelism of the computation. In addition, we assign a colour to each
team. In the course of the computation, the colour is changing according
to the team that is currently active. We show that we can simulate red-
green counter machines with APCol systems with two-coloured teams of
minimal size. Red-green counter machines are computing devices with
infinite run on finite input that exceed the power of Turing machines.

Keywords: Automaton-like P colonies, APCol systems, red-green
counter machine, unbounded computation, teams

1 Introduction

Recently, both unconventional Turing equivalent computing devices and com-
putational models which “go beyond” Turing, i.e., which are able to compute
more than recursively enumerable sets of strings or numbers are in the focus of
interest. In membrane computing, we can find examples for both types of such
constructs.

APCol systems (Automaton-like P colonies) were introduced in [5] as an
extension of P colonies (introduced in [9]) - a very simple variant of membrane
systems inspired by colonies of formal grammars. (The reader is referred to
[14] for more information in membrane systems and to [10] and [7] for details
on grammar systems theory.) An APCol system consists of a finite number of
agents - finite collections of objects embedded in a membrane - and a shared
environment. The agents are equipped with programs which are composed from
rules that allow them to interact with their environment that is represented by
a string. For this reason, the agents use their own objects and the objects of the
environment. The number of objects inside each agent is set by definition and it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/129701747?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 L. Ciencialová, L. Cienciala, E. Csuhaj-Varjú

is usually a very small number: 1, 2 or 3. The environmental string is processed
by the agents and it is used as a communication channel for the agents as well.
Through the string, the agents are able to affect the behaviour of another agent.

The activity of the agents is based on rules that can be rewriting, communi-
cation or checking rules [9]. A rewriting rule a → b allows the agent to rewrite
(evolve) one object a to object b. Both objects are placed inside the agent. Com-
munication rule c ↔ d makes possible to exchange object c placed inside the
agent with object d in the string. A checking rule is formed from two rules r1, r2
of type rewriting or communication. It sets a kind of priority between the two
rules r1 and r2. The agent tries to apply the first rule and if it cannot be per-
formed, then the agent executes the second rule. The rules are combined into
programs in such a way that all objects inside the agent are affected by execution
of the rules. Consequently, the number of rules in the program is the same as
the number of objects inside the agent.

The interested reader can find more details on P colonies in [14], [8] and [4].

In this paper, we focus on APCol systems with agents forming teams; the
concept was first proposed in [6]. The team is a finite number of agents of the
APCol system. These collections can be so-called prescribed teams (given to-
gether with the components of the APCol system) or so-called free teams where
only the size of the teams, i.e., the number of the agents in the team is given in
advance. The notion is inspired by the concept of team grammar systems (see
[15]). APCol systems with prescribed or with free teams function in the following
manner: in every computation step only one team is allowed to work (only one
team is active) and all of its components should perform a program in parallel.

Another interesting extension is to assign colours to programs, instructions
or rules and observing how the currently used colour changes under the com-
putation. This method is well-known for observing unbounded computations.
Motivated by the notion of red-green Turing machines [12] (red-green register
machines) and related notions in P systems theory [2], we introduce the concept
of APCol systems with coloured teams. These constructs are APCol systems
with teams where each team is associated with a colour. A string is accepted by
an APCol system with coloured teams, if starting with the string as initial string
the computation is unbounded and its teams with the final colour are active in
an infinite number of steps and the teams of the other colours are active only in
a finite number of steps.

Red-green Turing machines, introduced in [12] exceed the power of Turing
machines since they recognize exactly the Σ2-sets of the Arithmetical Hierarchy.
These machines are deterministic and their state sets are divided into two disjoint
sets, called the set of red states and the set of green states. Red-green Turing
machines work on finite input words with the following recognition criterion on
infinite runs: no red state is visited infinitely often and one or more green states
are visited infinitely often. A change from a green state to a red state or reversely
is called a mind change; we may speak of a change of the “colour”. In [12], it is
shown that every recursively enumerable language can be recognized by a red-
green Turing machine with one mind change. It is also proved that if more than

APCol Systems with Teams 3

one mind changes may take place, then red-green Turing machines are able to
recognize the complement of any recursively enumerable language.

Our paper is structured as follows: the second section is devoted to definitions
and notations used in the paper. The third section contains results obtained on
APCol systems with coloured teams, namely, we show that any red-green counter
machine can be simulated with an APCol system with coloured teams, where
there are two colours. The teams either consist of only one agent and then the
system works sequentially, or the APCol system has teams of at most two agents
acting in parallel. Finally, some conclusions are derived.

2 Definitions

Throughout the paper we assume that the reader is familiar with the basics of
formal language and automata theory; for further details consult [15]. We list
the notations used in the paper.

We use N·RE to denote the family of recursively enumerable sets of natural
numbers and N to denote the set of natural numbers.

For an alphabet Σ, Σ∗ denotes the set of all words over Σ (including empty
word ε). For the length of the word w ∈ Σ∗, we use notation |w| and for the
number of occurrences of symbol a ∈ Σ in w notation |w|a is used.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets over the set of objects
V is denoted by V ∗. The set V ′ is called the support of M and denoted by
supp(M) if for all x ∈ V ′ f(x) 6= 0. The cardinality of M , denoted by card(M),
is defined by card(M) =

∑

a∈V f(a). Any multiset of objects M with the set of
objects V = {ai, . . . , an} can be represented as a string w over alphabet V with
|w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters can also represent M , and ε represents the empty multiset.

2.1 Register and Counter Machines

We briefly recall the basic notions, following the notations used in [2].
A register machine [11] is a construct M = (m,B, l0, lh, P), where m is the

number of registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the
final label, and P is the set of instructions bijectively labelled by elements of B.
The instructions of M can be of the following forms:

– l1 : (ADD(r), l2, l3), with l1 ∈ (B − {lh}), l2, l3 ∈ B, 1 ≤ j ≤ m. It increases
the value of register r by one and the next instruction to be performed is
non-deterministically chosen, it is labelled by l2 or l3. This instruction is
called increment.

– l1 : (SUB(r), l2, l3), with l1 ∈ (B − {lh}), l2, l3 ∈ B, 1 ≤ j ≤ m. If the value
of register r is zero, then the label of the next instruction to be performed
is l3; otherwise, the value of register r is decreased by one and the label of

4 L. Ciencialová, L. Cienciala, E. Csuhaj-Varjú

the next instruction to be executed is l2. The first case is called zero-test,
the second case is called decrement.

– lh : HALT. The register machine stops executing instructions.

A configuration of a register machine is described by the numbers stored in the
registers and by the label of the next instruction to be performed. Computations
start by executing the instruction l0 of P , and terminate by execution of the
HALT-instruction lh.

This model of register machines can be extended by instructions for reading
from an input tape and writing to an output tape containing strings over an
input alphabet Tin and an output alphabet Tout, respectively, see [2]:

– l1 : (read(a), l2), with l1 ∈ (B−{lh}), l2 ∈ B, a ∈ Tin. This instruction reads
symbol a from the input tape and the next instruction is l2.

– l1 : (write(a), l2), with l1 ∈ (B − {lh}), l2 ∈ B, a ∈ Tout. This instruction
writes symbol a to the output tape and the next instruction is l2.

This extended register machine, working with strings is also called a counter
automaton and is denoted by M = (m,B, l0, lh, P, Tin, Tout). If no output is
written, Tout is not indicated.

It is known (see e.g. [11]) that register machines with (at most) three reg-
isters can compute all recursively enumerable sets of natural numbers. Counter
automata with two registers can simulate the computations of Turing machines
and thus characterize RE. All these results are obtained with deterministic reg-
ister machines, where the ADD-instructions are of the form l1 : (ADD(r), l2),
with l1 ∈ (B − {lh}), l2 ∈ B, 1 ≤ j ≤ m. More details can be found in [2].

2.2 Red-Green Turing Machines

We briefly recall the most important notions and statements concerning red-
green Turing machines and their variants, following [12], [1], and [2].

Red-green Turing machines, introduced in [12], exceed the power of the stan-
dard Turing machines, since they recognize exactly the Σ2-sets of the Arithmeti-
cal Hierarchy. As we told before, they are deterministic and their state sets are
divided into two disjoint sets, namely, the set of red states and the set of green
states. Red-green Turing machines work on finite inputs with the recognition
criterion on infinite runs that no red state is visited infinitely often and one or
more green states are visited infinitely often. A change from a green state to a
red state or reversely is called a mind change; we may speak of a change of the
“colour”. In [12], it was shown that every recursively enumerable language can
be recognized by a red-green Turing machine with one mind change. It was also
proved that if more than one mind change may take place, then they are able to
recognize the complement of any recursively enumerable language.

In the analogy of the concept of red-green Turing machines, red-green counter
machines (red-green register machines) were defined and examined [1]. The au-
thors proved that the computations of a red-green Turing machine TM can be
simulated by a red-green register machine RM with two registers and with string

APCol Systems with Teams 5

input in such a way that during the simulation of a transition of TM leading
from a state p with colour c to a state p′ with colour c′ the simulating register
machine uses instructions with labels (states) of colour c and only in the last
step of the simulation changes the label (state) to colour c′. They showed that
the reverse simulation works as well: the computations of a red-green register
machine RM with an arbitrary number of registers and with string input can
be simulated by a red-green Turing machine TM in such a way that during the
simulation of a computation step of RM from an instruction with label (state)
p with colour c to an instruction with label (state) p′ with colour c′, the simu-
lating Turing machine TM are in states of colour c and only in the last step of
the simulation changes to a state of colour c′.

In [2], the above notions were implemented for membrane systems: the no-
tions of a red-green P automaton and its variants, as counterparts were intro-
duced. It was shown that these devices are able to “go beyond” Turing, in the
sense as red-green Turing machines are able to do.

2.3 APCol Systems

In the following we recall the concept of APCol systems, particular variants of
P colonies, where the environment of the agents is given in the form of a string
[5].

The agents of APCol systems contain objects, each object is an element of
a finite alphabet. With every agent, a set of programs is associated. There are
two types of rules in the programs. The first one is of the form a → b and it is
called an evolution rule. It means that object a inside of the agent is rewritten
(evolved) to object b. The second type of rules is called a communication rule
and it is in the form c ↔ d. When this rule is performed, then the object c inside
the agent and a symbol d in the string are exchanged. If c = e, then the agent
erases d from the input string and if d = e, then the symbol c is inserted into
the string.

During the work of the APCol system, the agents perform programs. The
number of objects inside the agents remain unchanged during the functioning of
the system, it is usually 2.

Since both rules in a program can be communication rules, an agent can
work with two objects in the string in one step of the computation. In the case
of program 〈a ↔ b; c ↔ d〉, a substring bd of the input string is replaced by string
ac. If the program is of the form 〈c ↔ d; a ↔ b〉, then a substring db of the input
string is replaced by string ca. That is, the agent can act only in one place in a
computation step and the change of the string depends both on the order of the
rules in the program and on the interacting objects. In particular, the following
types of programs with two communication rules are considered:

– 〈a ↔ b; c ↔ e〉 - b in the string is replaced by ac,
– 〈c ↔ e; a ↔ b〉 - b in the string is replaced by ca,
– 〈a ↔ e; c ↔ e〉 - ac is inserted in a non-deterministically chosen place in the

string,

6 L. Ciencialová, L. Cienciala, E. Csuhaj-Varjú

– 〈e ↔ b; e ↔ d〉 - bd is erased from the string,
– 〈e ↔ d; e ↔ b〉 - db is erased from the string,
– 〈e ↔ e; e ↔ d〉; 〈e ↔ e; c ↔ d〉, . . . - these programs can be replaced by pro-

grams of type 〈e → e; c ↔ d〉.

The program is said to be restricted if it is formed from one rewriting and
one communication rule. The APCol system is restricted if all of the programs
of the agents are restricted.

To help the reader in the easier understanding the technical details of the
paper, we recall the formal definition of an APCol system.

Definition 1. [5] An APCol system is a construct
Π = (O, e,A1, . . . , An), where

– O is an alphabet; its elements are called the objects,
– e ∈ O, called the basic object,
– Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ωi, Pi, Fi), where

• ωi is a multiset over O, describing the initial state (content) of the agent,
|ωi| = 2,

• Pi = {pi,1, . . . , pi,ki
} is a finite set of programs associated with the agent,

where each program is a pair of rules. Each rule is in one of the following
forms:
∗ a → b, where a, b ∈ O, called an evolution rule,
∗ c ↔ d, where c, d ∈ O, called a communication rule,

• Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai.

At the beginning of the computation of the APCol system is in initial con-
figuration which is an (n + 1)-tuple c = (ω;ω1, . . . , ωn) where ω is the initial
state of the environment and the other n components are multisets of strings of
objects, given in the form of strings, the initial states of the agents. The initial
state of the environment does not contain object e.

A configuration of an APCol system Π is given by (w;w1, . . . , wn), where
|wi| = 2, 1 ≤ i ≤ n, wi represents all the objects placed inside the i-th agent
and w ∈ (O − {e})∗ is the string to be processed.

In each computation step every agent attempts to find one of its programs to
use. If it has applicable programs, then it non-deterministically chooses one of
them and applies it. As usual in membrane computing, APCol systems work in
the maximally parallel manner, i.e., as many agents perform one of its programs
in parallel as possible. We note that other working modes can also be defined.

By applying programs, the APCol system passes from one configuration to
another configuration. A sequence of configurations starting from the initial con-
figuration is called a computation. A configuration is halting if the APCol system
has no applicable program.

The result of computation depends on the mode in which the APCol sys-
tem works. In the accepting mode, a string ω is accepted by APCol system
Π if there exists a computation by Π such that it starts in the initial config-
uration (ω;ω1, . . . , ωn) and ends by halting in a configuration (ε;w1, . . . , wn),

APCol Systems with Teams 7

where at least one of wi ∈ Fi for 1 ≤ i ≤ n. In the generating mode, a string
wF is generated by Π if and only if there exists a computation starting in an
initial configuration (ε;ω1, . . . , ωn) and the computation ends by halting in the
configuration (wF ;w1, . . . , wn), where at least one of wi ∈ Fi for 1 ≤ i ≤ n.

An APCol system Π can generate or accept a set of numbers as well, i.e.,
|L(Π)|.

In [5] the authors proved that the family of languages accepted by jumping
finite automata (introduced in [13]) is properly included in the family of lan-
guages accepted by APCol systems with one agent, and it is proved that any
recursively enumerable language can be obtained as a projection of a language
accepted by an APCol system with two agents.

In [3] the authors proved that restricted APCol systems with two agents
working in the generating mode determine N·RE, while if the APCol systems
have only a single agent, then only a proper subset of N·RE can be obtained.

2.4 APCol Systems with Coloured Teams of Agents

As a restriction of the computation process, we can introduce teams into the
concept of APCol system, as proposed in [6]. The team is a finite set of agents.
These teams can be prescribed teams (given together with the components of
the APC0L system) or free teams where only the size of the teams, i.e., the
number of agents in the team is given in advance. The notion is inspired by the
concept of team grammar systems (see [15]). APCol systems with prescribed or
with free teams work in the following manner: at any computation step only
one team is allowed to work (only one team is active) and all of its components
should perform a program in parallel.

One other extension of the concept of APCol system is associating ”colour”
to the agents or, if the APCol system is with teams, to the teams. The concept is
inspired by red-green Turing machines; the idea was first presented in [6], given
in an informal manner, using only two colours, red and green.

Definition 2. An APCol system with coloured teams is a construct
Π = (O, e,A1, . . . , An, C, f,B,Bcolours, Bteams), where

– O is an alphabet; its elements are called the objects,
– e ∈ O, called the basic object,
– Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ωi, Pi, Fi), where

• ωi is a multiset over O, describing the initial state (content) of the agent,
|ωi| = 2,

• Pi = {pi,1, . . . , pi,ki
} is a finite set of programs associated with the agent,

where each program is a pair of rules. Each rule is in one of the following
forms:
∗ a → b, where a, b ∈ O, called an evolution rule,
∗ c ↔ d, where c, d ∈ O, called a communication rule,

• Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai,
– C is a set of labels of colours,

8 L. Ciencialová, L. Cienciala, E. Csuhaj-Varjú

– f ∈ C is the final colour,
– B is a set of labels of teams,
– Bcolour is a set of pairs (Bs, ct) assigning to every team its colour, where

Bs ∈ B, ct ∈ C,
– Bteams is a set of pairs (Ai, Bs) assigning the label of team Bs ∈ B to each

agent Ai.

Accepting mode of infinite computations Due to the results of the computa-
tional power of APCol systems, it can easily be seen that for finite computations
colours and teams do not add more, they can only be used for defining restricted
classes of APCol systems. However, this is not the case if we consider unbounded
computations.

We say that a string is accepted by an APCol system with coloured teams,
if starting with the string as initial string the computation is unbounded and
its teams with the final colour are active in an infinite number of steps and the
teams of the other colours are active only in a finite number of steps.

Now we provide an illustrative example of APCol system with coloured
teams.

Example 1. We construct an APCol system with three teams assigned to three
different colours - red, green and orange, simulating work of streets lights con-
nected with speed radar. The green light is on the traffic light at the beginning.
If the vehicle is approaching faster than allowed, the traffic light changes to or-
ange and red. In the case that the vehicle stops before the traffic lights (or it
drives away while the red is on), the traffic light lights up orange and then green
again.The input string for computation is a sequence of signals coming from
speed radar. The signals are encoded into symbols in such a way that F means
fast speed over limit, S means slow speed within the limits, Z means that car
stopped and finally E which means that street is empty. The signals are encoded
and inserted into the string with given frequency. Every input string starts with
special symbol $.

The constructed APCol system
Π = ({e, E, Z, S, F, o, r, g, $, R, P}, e,

A1, A2, A3, {green, orange, red}, green,
{B1, B2, B3}, {(B1, green), (B2, orange), (B3, red)},
{(A1, B1), (A2, B2), (A3, B3)})

has three teams - one green, one orange and one red. Each team is formed from
only one agent. Agent A1 has initial configuration ge and the following programs:

1 : 〈g ↔ $; e ↔ X〉 X ∈ {E,Z, S}
2 : 〈$ ↔ g;X → e〉
The green team is active only if the current symbol is in accordance with the

speed limit or the street is empty. When the speed of the arriving vehicle is over
the speed limit, only the orange team can work.

The initial configuration of the agent A2 is oe and it executes following pro-
grams:

APCol Systems with Teams 9

3 : 〈o ↔ $; e ↔ F 〉
4 : 〈$ → $;F → R〉
5 : 〈$ → $;R ↔ o〉
The agent from the orange team consumes symbol F and replaces symbol $

by R. When this symbol appears in the string, only the red team can work.
The initial configuration of the agent A3 is re and it performs the following

programs:
6 : 〈r ↔ R; e ↔ X〉 , X ∈ {E,F, S, Z}
7 : 〈R → R;Y → e〉 , Y ∈ {F, S}
8 : 〈R ↔ r; e → e〉
9 : 〈R → P ;K → e〉 , K ∈ {Z,E}

10 : 〈P ↔ r; e → e〉
The agent from the red team consumes symbol R and the neighbouring sym-

bol from the string. The following behaviour of the agent depends on consumed
symbol. If the symbol is F or it is S, then the agent puts to the string symbol R
and in this way it calls itself to work. In the case of symbol Z or E, (the vehicle
stopped or the street is empty) then the agent puts the symbol P to the string
and the agent from the orange team has an applicable program.

11 : 〈$ → $; o ↔ P 〉
12 : 〈$ → $;P → e〉
13 : 〈$ ↔ o; e → e〉
After executing program 13, symbol $ appears in the string and it can be

consumed by agent from the green team or the orange team. Although the
computation over a finite string is not unbounded, but one can assume that if
there is no output from the speed radar, encoder puts symbols E into the string
with a given frequency (it is similar to the endless tape of Turing machine) and
the computation can continue with executing programs of the agent from the
green team.

3 APCol Systems with Coloured Teams and Red-Green

Counter Machines

In this section we study the interconnection between red-green counter machines
and APCol systems with coloured teams. First we present a result where the
number of agents within every team is minimal, namely, one.

Theorem 1. For every red-green counter machine

CM = (m,B,Bred, Bgreen, l0, P, Tin)

we can construct an APCol system

Π = (O, e,A1, . . . , An, C,B,Bcolours, Bteams)

with one agent teams simulating the computations of CM .

10 L. Ciencialová, L. Cienciala, E. Csuhaj-Varjú

Proof. Consider a red-green counter machine CM = (2, B,Bred, Bgreen, l0, P,

Tin) accepting language L(CM). To every such counter machine there exists
a red-green counter machine CM ′ = (2, B ∪ {l′0}, B

′

red, B
′

green, l
′

0, P, Tin ∪ {#})
that accepts language L(CM ′) = # · L(CM), where {#} ∩ Tin = ∅ and the
first instruction of CM ′ to be executed is instruction l′0 : (read(#), l0). Then it
continues the computation in the same way as machine CM . We construct an
APCol system Π with coloured teams as follows: all labels from the set B ∪ Tin

are objects of the APCol system. The content of register i is represented by the
number of copies of objects i occurring in the string. All teams have one agent
only. At the beginning of the computation only one team of agents can work -
red team of one agent that generates symbols to the beginning of the string.

Team: B1

Colour: Red
Agent: A1 = (ee, P1, ∅)
Programs: 1 : 〈e → #1; e → O1〉 ; 6 :

〈

R©→ R ;R ↔ e
〉

;

2 : 〈#1 ↔ #;O1 ↔ e〉 ; 7 :
〈

R → G©; e → G
〉

;

3 : 〈# → #2; e → $〉 ; 8 :
〈

G©→ G ;G ↔ e
〉

;

4 : 〈#2 ↔ e; $ ↔ O1 〉 ; 9 :
〈

G → L©; e → X0

〉

;

5 : 〈O1 → R; e → R©〉 ; 10 :
〈

L©→ L ;X0 ↔ e
〉

;

Symbol X is an element from the set {l, r, g} and it is selected as follows:
let l1 be the currently simulated instruction and let l2 be the label of the next
instruction. If l2 is a read-instruction and the colour of instruction is red (or
green) then X = r (or X = g). Otherwise X = l.

The APCol system starts its computation on string #ω. Agent A1 uses pro-
grams 1, 2, 3 and 4 to replace symbol # by substring #1#2$. Then it places
three symbols (R,G,X0) into random positions in the string.

Symbols R and G are consumed by two agents from two teams.

Team: B2

Colour: Red
Agent: A2 = (ee, P2, ∅)
Programs: 11 : 〈e ↔ R; e → e〉 ;

Team: B3

Colour: Green
Agent: A3 = (ee, P3, ∅)
Programs: 12 : 〈e ↔ G; e → e〉 ;

Let l1 be a read-instruction l1 : (read(a), l2). We construct two similar teams
of different colours to execute the first phase of the simulation of the read-
instruction. The agent from such a team checks whether the symbol currently
read from the input string is a or not. The team of the working agent has the
same colour as the previously simulated instruction.

APCol Systems with Teams 11

Team: BX1
for X ∈ {r, g}

Colour: Br1 is Red, Bg1 is Green
Agent: Ax1

= (ee, Px1
, ∅)

Programs: 13 : 〈e ↔ X1; e → e〉 ;

14 : 〈X1 → L′

1; e → e〉 ;

15 : 〈L′

1 ↔ $; e ↔ y〉 ;
for all y ∈ Tin

Team: B2 or B3

Colour: B2 is Red, B3 is Green
Agent: A2 or A3; d ∈ {R,G}
Programs: 16 : 〈d ↔ L′

1; e → M1〉 ;

17 : 〈L′

1 → N1;M1 → M1〉 ;

18 : 〈M1 ↔ d;N1 ↔ e〉 ;

When agent AX1
successfully finishes its work, then agent from a team with

the same colour as l1 inserts symbol l2 into the string. In the other case, when the
read-instruction cannot be performed, agent from red team starts to be active
for an unbounded number of steps.

Team: BX1
for X ∈ {r, g}

Colour: Br1 is Red, Bg1 is Green
Agent: AX1

Programs: 19 : 〈$ ↔ M1; a → e〉 ; 22 : 〈$ ↔ M1; y ↔ N1〉 ; y ∈ Tin − {a};

20 : 〈M1 → Q1; e ↔ N1〉 ; 23 : 〈M1 → W ;N1 → e〉 ;

21 : 〈Q1 ↔ e;N1 → E〉 ; 24 : 〈W ↔ e; e → e〉 ;

Team: Bl1

Colour: Red or Green (depends on l1)
Agent: Al1 = (ee, Pl1 , ∅)
Programs: 25 : 〈e ↔ Q1; e → X2〉 ;

26 : 〈X1 ↔ e;Q1 → e〉 ;

X ∈ {l, r, g}

Team: B4

Colour: Red
Agent: A4

Programs: 27 : 〈e ↔ W ; e → e〉 ;

28 : 〈W → W ; e → e〉 ;

For each ADD-instruction l1 : (ADD(r), l2), there are two teams of agents
of the same colour as the ADD-instruction has.

Team: Bl1

Colour: Red or Green (depends on the instruction colour)
Agent: Al1

Programs: 29 : 〈e ↔ l1; a → e〉 ; 32 : 〈#r ↔ M1; r ↔ N1〉 ;

30 : 〈l1 → L1; e → e〉 ; 33 : 〈M1 → X2; e → e〉 ;X ∈ {l, r, g}

31 : 〈L1 ↔ #r; e → r〉 ; 34 : 〈X2 ↔ e; e → e〉 ;

Team: B2 or B3

Colour: B2 is Red, B3 is Green
Agent: A2 or A3; d ∈ {R,G}
Programs: 35 : 〈d ↔ L1; e → M1〉 ;

36 : 〈M1 ↔ d;L1 → e〉 ;

The first agent consumes the corresponding symbol of the actually simulated
instruction. At the following steps, the agent rewrites the symbol l1 to L1 and
exchanges this symbol by #r. In the same time, the agent generates symbol r.
Now it is time for the second team to work. The agent from the second team
replaces symbol L1 by R or G - it depends on the colour of the instruction,

12 L. Ciencialová, L. Cienciala, E. Csuhaj-Varjú

rewrites it to symbol M1 and puts the symbol M1 to the string instead of symbol
R or G. When symbol M1 appears in the string, then the agent B1 exchanges it
by two symbols - #r and r.

For SUB-instruction l1 : (SUB(r), l2, l3), there are two teams of the same
colour, too. The first team with one agent is for execution of the instruction and
the second team is preparing the symbols for further use (symbol L1 is replaced
with M1).

Team: Bl1

Colour: Red or Green
(depends on the colour of l1)

Agent: Al1

Programs: 37 : 〈e ↔ l1; e → e〉 ;

38 : 〈l1 → L1; e → e〉 ;

39 : 〈L1 ↔ #r; e ↔ r〉 ;

40 : 〈L1 ↔ #r; e ↔ Z〉 ;

Z ∈ {#r+1, $}

Team: B2 or B3

Colour: B2 is Red, B3 is Green
Agent: A2 or A3; d ∈ {R,G}
Programs: 41 : 〈d ↔ L1; e → M1〉 ;

42 : 〈M1 ↔ d;L1 → e〉 ;

The idea of simulation of SUB-instruction is that the agent consumes symbol
#r together with symbol r - if the counter r is not empty -, or with symbol #r+1

(or $) - if the counter r is empty and it is not the last counter (or it is the last
counter). According to its content, the agent generates the label of the next
instruction.

Team: Bl1

Colour: Red or Green (depends on the colour of l1)
Agent: Al1

Programs: 43 : 〈#r → #r; r → l′2〉 ; 48 : 〈#r ↔ M1;Z ↔ N1〉 ;

44 : 〈#r ↔ M1; l
′

2 → l′′2 〉 ; 33 : 〈M1 → Y3;N1 → e〉 ;

45 : 〈M1 → e; l′′2 → l′′′2 〉 ; 33 : 〈Y3 ↔ e; e → e〉 ;

46 : 〈e ↔ N1; l
′′′

2 → X2〉 ; X,Y ∈ {l, r, g};

47 : 〈N1 → e;X2 ↔ e〉 ; Z ∈ {#r+1, $}

We construct the APCol system

Π = (O, e,A1, . . . , An, C,B,Bcolours, Bteams) with:

− O = Tin ∪ {li, l
′

i, l
′′

i , l
′′′

i , Li, L
′

i,Mi, Ni, gi, ri, Qi|li ∈ H} ∪ {i|1 ≤ i ≤ m}∪

∪ {e,G,R, R©, G©, R , G , L©, L ,W, $,#1,#2, Oi},

− n = |H|+ 2× number of read-instructions + 4
− B = {Bj}, 1 ≤ j ≤ n

− C = {Red,Green}
− The sets Bcolours, Bteams and the agents A1, . . . , An

are defined in the previous part of the text.
The computation of the APCol system starts with string $w. The first steps

are done by the red team B1. Teams B2 and B3 must go through initialization

APCol Systems with Teams 13

before they are used the first time during simulation of the first red or green in-
struction. It can imply only a finite number of mind changes. After initialization
of these two agents, the APCol system goes through the same mind changes as
the red-green counter machine CM goes through during the corresponding com-
putation. Therefore, if red-green counter machine CM accepts string w, then
APCol system Π accepts it too and vice versa.

⊓⊔

Although the APCol system from proof of Theorem 1. uses the maximally
parallel working mode, its work is limited to the use of one team at each step,
therefore, to one agent. As a matter of fact, it works sequentially.

Next we provide another simulation of the red-green counter machines with
APCol systems with teams and colours.

Theorem 2. For every red-green counter machine

CM = (m,B,Bred, Bgreen, l0, P, Tin)

we can construct an APCol system

Π = (O, e,A1, . . . , An, C,B,Bcolours, Bteams)

with at least one team formed from two agents simulating the computations of
CM with the same result.

Proof. As in proof of Theorem 1, let us consider red-green counter machine

CM = (2, B,Bred, Bgreen, l0, P, Tin)

accepting language L(CM). To every such a red-green counter machine there
exists a red-green counter machine

CM ′ = (2, B ∪ {l′0}, B
′

red, B
′

green, l
′

0, P, Tin ∪ {#})

that accepts language L(CM ′) = # ·L(CM), where {#} ∩ Tin = ∅ and the first
instruction of the machine CM ′ to be executed is instruction l′0 : (read(#), l0).
Then, it continues the computation in the same way as machine CM . We con-
struct an APCol system Π with coloured teams as follows: All labels from the
set B ∪ Tin are objects of the APCol system. The content of register i is rep-
resented by the number of copies of objects i in the string. At the beginning of
the computation only one team of agents can work - red team of one agent that
generates symbols to the beginning of the string.

Team: B1

Colour: Red
Agent: A1 = (ee, P1, ∅)
Programs: 1 : 〈e → #1; e → O1〉 ; 4 : 〈#2 ↔ e; $ ↔ O1 〉 ;

2 : 〈#1 ↔ #;O1 ↔ e〉 ; 5 : 〈O1 → l0; e → T 〉 ;

3 : 〈# → #2; e → $〉 ; 6 : 〈T → T ; l0 ↔ e〉 ;

14 L. Ciencialová, L. Cienciala, E. Csuhaj-Varjú

The APCol system starts its computation on string #ω. Agent A1 uses pro-
grams 1, 2, 3 and 4 to replace symbol # by substring #1#2$. Then it places
symbol l0 into some random position in the string.

Let l1 be a read-instruction l1 : (read(a), l2). We construct a team of the
same colour as the read-instruction has. The team is formed from two agents.
Because they work as a team, either they both execute their programs or none
of them works.

Team: Bl1

Colour: Red or Green (it depends on the colour of l1)
Agent: Aa1

= (ee, Pa1
, ∅) Agent: Ab1 = (ee, Pb1 , ∅)

Programs: 7 : 〈e ↔ l1; e → e〉 ;

8 : 〈l1 → $; e → e〉 ;

9 : 〈$ ↔ R1; e → e〉 ;

10 : 〈R1 → e; e → e〉 ;

Programs: 11 : 〈e → R1; e → e〉 ;

12 : 〈R1 ↔ $; e → x〉 ;

for all x ∈ Tin

13 : 〈$ → l2; a → e〉 ;

14 : 〈$ → W ; y → e〉 ;

for all y ∈ Tin − {a}

15 : 〈l2 ↔ e; e → e〉 ;

16 : 〈W ↔ e; e → e〉 ;

Although agent Ab1 has an applicable program it must stay inactive until
the first agent has an applicable program, too, i.e., until symbol l1 appears in
the string.
Team: B1

Colour: Red
Agent: A1

Programs: 17 : 〈e ↔ W ;T → T 〉 ;

18 : 〈W → W ;T → T 〉 ;

When the read-instruction cannot be performed, agent A1 from red team
starts working for an unbounded number of steps.

For each ADD-instruction l1 : (ADD(r), l2), there is one team of agents of
the same colour as the ADD-instruction has.

Team: Bl1

Colour: Red or Green (it depends on the colour of l1)
Agent: Aa1

= (ee, Pa1
, ∅) Agent: Ab1 = (ee, Pb1 , ∅)

Programs: 19 : 〈e ↔ l1; e → L1〉 ;

20 : 〈L1 ↔ #r; l1 → K1〉 ;

21 : 〈#r → #r;K1 → K2〉 ;

22 : 〈#r ↔ M1;K2 → K3〉 ;

23 : 〈M1 → e;K3 → e〉 ;

Programs: 24 : 〈e → r′; e → e〉 ;

25 : 〈r′ → r; e → M1〉 ;

26 : 〈M1 ↔ L1; r ↔ e〉 ;

27 : 〈L1 → l2; e → e〉 ;

28 : 〈l2 ↔ e; e → e〉 ;

The first agent consumes the symbol corresponding to the actually simulated
instruction. In the same time, the second agent starts to generate symbol r. At
the following steps, the first agent rewrites symbol l1 to L1 and exchanges this
symbol by #r. The first agent can put symbol #r back to the string only by

APCol Systems with Teams 15

replacing it by symbol M1 generated by the second agent. The second agent
inserts the label of the next instruction at some random place in the string.

For SUB-instruction l1 : (SUB(r), l2, l3), there is one team of the same colour
as the instruction has.

Team: Bl1

Colour: Red or Green (it depends on the colour of l1)
Agent: Aa1

= (ee, Pa1
, ∅) Agent: Ab1 = (ee, Pb1 , ∅)

Programs: 29 : 〈e ↔ l1; e → L1〉 ;

30 : 〈L1 ↔ #r; l1 → K1〉 ;

31 : 〈#r → #r;K1 → K2〉 ;

32 : 〈#r ↔ M1;K2 → K2〉 ;

33 : 〈M1 → M ′

1;K2 → K2〉 ;

34 : 〈M ′

1 ↔ N1;K2 → K2〉 ;

35 : 〈N1 → e;K2 → K2〉 ;

36 : 〈e → e;K2 → e〉 ;

Programs: 37 : 〈e → M1; e → K1〉 ;

38 : 〈M1 → M1;K1 → e〉 ;

39 : 〈M1 ↔ L1; e ↔ d〉 ;

for all d ∈ {r,#r+1, $}

40 : 〈L1 → N1; r → K1〉 ;

41 : 〈L1 → N1; d
′ → d′〉 ;

for all d′ ∈ {#r+1, $}

42 : 〈N1 ↔ #r;K1 → K2〉 ;

43 : 〈N1 ↔ #r; d
′ → d′〉 ;

44 : 〈#r → #r;K1 → K2〉 ;

45 : 〈#r → #r;K2 → K3〉 ;

46 : 〈#r ↔ M ′

1;K3 → l2〉 ;

47 : 〈#r → l2; e → e〉 ;

48 : 〈N1 ↔ #r; d
′ ↔ e〉 ;

49 : 〈#r → #r; e → K〉 ;

50 : 〈#r ↔ M ′

1;K → l3〉 ;

51 : 〈l2 ↔ e;M ′

1 → e〉 ;

52 : 〈l3 ↔ e;M ′

1 → e〉 ;

The idea of simulation of SUB-instruction is that agent consumes symbol #r

together with the right neighbouring symbol. According to content of the agent,
it generates the label of the next instruction.

We construct the APCol system

Π = (O, e,A1, . . . , An, C,Green, B,Bcolours, Bteams) with:

− O = Tin ∪ {li, Li,Mi,M
′

1, Ni, Ri|li ∈ H} ∪ {i, i′|1 ≤ i ≤ m}∪

∪ {e,K1,K2,K3,W, $,#1,#2},

− n = 2× |H|+ 1
− B = {Bj}, 1 ≤ j ≤ p; p = |H|+ 1
− C = {Red,Green}
− The sets Bcolours, Bteams and the agents A1, . . . , An

are defined in the previous part of the text.

The computation of the APCol system starts with string $w. The first steps
are done by the red team B1. After initialization, the APCol system goes through

16 L. Ciencialová, L. Cienciala, E. Csuhaj-Varjú

the same mind changes as the counter machine goes through during the cor-
responding computation. Therefore, if red-green counter machine CM accepts
string w, then APCol system Π accepts string #w too, and vice versa.

⊓⊔

4 Conclusions

In this paper, we investigated the possibility of “going beyond” Turing in the
terms of APCol systems. We introduced the notion of teams of agents as a re-
striction for the maximal parallelism of computation. In addition, we assigned
a colour to each team. The unbounded computation was described by the se-
quence of the colours associated to the acting teams. We have shown that we
can simulate red-green counter machines with APCol systems with two-coloured
teams. Red-green counter machines are computing devices with infinite run on
finite input that exceed the power of Turing machines.

As we mentioned in the Introduction, there are concepts in P systems theory
which are motivated and mimic the behaviour of red-green Turing machines, for
example [2]. The proofs of the theorems in Section 3 demonstrate that finite
communities of very simple and very small computing devices (i.e. agents and
programs) in a suitable environment and using a simple cooperation protocol
(based on colours) can produce a behaviour which may not be computable in the
sense of Turing machines. These results add further information on the behaviour
of communities of agents and ideas to constructs networks of computing agents.

Acknowledgments. This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustainability (NPU II)
project IT4Innovations excellence in science - LQ1602, by SGS/13/2016 and by
Grant No. 120558 of the National Research, Development, and Innovation Office,
Hungary.

References

1. Alhazov, A., Aman, B., Freund, R., Păun, G.: Matter and Anti-matter in Mem-
brane Systems. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) Descriptional
Complexity of Formal Systems: 16th International Workshop, DCFS 2014, Turku,
Finland, August 5-8, 2014. Proceedings. pp. 65–76. Springer International Pub-
lishing, Cham (2014),

2. Aman, B., Csuhaj-Varjú, E., Freund, R.: Red-Green P Automata. In: Gheorghe,
M. et al. (eds.): CMC 2014, LNCS, vol. 8961, pp. 139–157, Springer (2014)

3. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E.: A Class of Restricted P Colonies
with String Environment. Natural Computing 15(4), 541–549 (2016),

4. Cienciala, L., Ciencialová, L.: P Colonies and Their Extensions. In: Kelemen, J.,
Kelemenová, A. (eds.) Computation, Cooperation, and Life – Essays Dedicated to
Gheorghe Paun on the Occasion of His 60th Birthday. Lecture Notes in Computer
Science, vol. 6610, pp. 158–169. Springer-Verlag, Berlin Heidelberg (2011),

APCol Systems with Teams 17

5. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E.: Towards on P Colonies Processing
Strings. In: Proc. BWMC 2014, Sevilla, 2014. pp. 102–118. Fénix Editora, Sevilla,
Spain (2014)

6. Csuhaj-Varjú, E.: Extensions of P Colonies (Extended Abstract). In: Leporati,
A. and Zandron, C. (Eds.) Proc. CMC17, Milan, 2014. pp. 281–286. University
Milano-Bicocca & IMCS, Italy (2014)

7. Csuhaj-Varjú, E., Kelemen, J., Păun, Gh., Dassow, J.(eds.): Grammar Systems:
A Grammatical Approach to Distribution and Cooperation. Gordon and Breach
Science Publishers, Inc., Newark, NJ, USA (1994)

8. Kelemenová, A.: P Colonies. Chapter 23.1, In: Păun, Gh., Rozenberg, G., Sa-
lomaa, A. (eds.) The Oxford Handbook of Membrane Computing, pp. 584–593.
Oxford University Press (2010)

9. Kelemen, J., Kelemenová, A., Păun, G.: Preview of P Colonies: A Biochemically
Inspired Computing Model. In: Workshop and Tutorial Proceedings. Ninth In-
ternational Conference on the Simulation and Synthesis of Living Systems (Alife
IX). pp. 82–86. Boston, Mass (2004)

10. Kelemen, J., Kelemenová, A.: A Grammar-Theoretic Treatment of Multiagent
Systems. Cybern. Syst. 23(6), 621–633 (Nov 1992),

11. Minsky, M. L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs, NJ, 1967.

12. van Leeuwen, J., Wiedermann, J.: Computation as an Unbounded Process. The-
oretical Computer Science 429, 202 – 212 (2012),

13. Meduna, A., Zemek, P.: Jumping Finite Automata. Int. J. Found. Comput. Sci.
23(7), 1555–1578 (2012)

14. Păun, Gh., Rozenberg, G., Salomaa, A.(eds.): The Oxford Handbook of Mem-
brane Computing. Oxford University Press, Inc., New York, NY, USA (2010)

15. Rozenberg, G., Salomaa, A.(eds.): Handbook of Formal Languages I-III. Springer
Verlag., Berin-Heidelberg-New York (1997)

