1,807 research outputs found

    Beyond the current noise limit in imaging through turbulent medium

    Full text link
    Shift-and-add is an approach employed to mitigate the phenomenon of resolution degradation in images acquired through a turbulent medium. Using this technique, a large number of consecutive short exposures is registered below the coherence time of the atmosphere or other blurring medium. The acquired images are shifted to the position of the brightest speckle and stacked together to obtain high-resolution and high signal-to-noise frame. In this paper we present a highly efficient method for determination of frames shifts, even if in a single frame the object cannot be distinguished from the background noise. The technique utilizes our custom genetic algorithm, which iteratively evolves a set of image shifts. We used the maximal energy of stacked images as an objective function for shifts estimation and validate the efficiency of the method on simulated and real images of simple and complex sources. Obtained results confirmed, that our proposed method allows for the recovery of spatial distribution of objects even only 2% brighter than their background. The presented approach extends significantly current limits of image reconstruction with the use of shift-and-add method. The applications of our algorithm include both the optical and the infrared imaging. Our method may be also employed as a digital image stabilizer in extremely low light level conditions in professional and consumer applications.Comment: 8 pages, 4 figure

    Impact of European Integration on the Functioning of the Insurance Market in Poland

    Get PDF
    The transformation process, that has begun 20 years ago, generated significant changes in the structure and organization of Polish economy. It stimulated development of particular market's segments, especially of the insurance sector. Poland's accession to the European Union required conformity to Its regulations, fulfillment of several conditions connected with the membership in the European Community. The purpose of this article is to present the main consequences of Poland's integration with EU in the field of insurance market. Joining the common market was an important challenge for this sector in our country.Rok 1990 stanowił początek procesu transformacji systemu społeczno - gospodarczego i ustrojowego. Ostatnie 20 lat to okres intensywnych przemian o charakterze strukturalnym i organizacyjnym, w wyniku których ukształtowały się warunki rozwoju poszczególnych segmentów systemu finansowego państwa, zwłaszcza sektora ubezpieczeń. Przystąpienie Polski do Unii Europejskiej wymagało wprowadzenia szeregu zmian, dostosowujących polski porządek prawny do uregulowań wspólnotowych regulujących funkcjonowanie rynku ubezpieczeń. Celem artykułu jest zaprezentowanie szans i zagrożeń, jakie wynikają dla tego segmentu gospodarki z przystąpienia Polski do UE. Niewątpliwie proces integracji stanowił poważne wyzwanie dla polskiego rynku ubezpieczeń

    Reconstructing the properties of dark energy from recent observations

    Full text link
    We explore the properties of dark energy from recent observational data, including the Gold Sne Ia, the baryonic acoustic oscillation peak from SDSS, the CMB shift parameter from WMAP3, the X-ray gas mass fraction in cluster and the Hubble parameter versus redshift. The ΛCDM\Lambda CDM model with curvature and two parameterized dark energy models are studied. For the ΛCDM\Lambda CDM model, we find that the flat universe is consistent with observations at the 1σ1\sigma confidence level and a closed universe is slightly favored by these data. For two parameterized dark energy models, with the prior given on the present matter density, Ωm0\Omega_{m0}, with Ωm0=0.24\Omega_{m0}=0.24, Ωm0=0.28\Omega_{m0}=0.28 and Ωm0=0.32\Omega_{m0}=0.32, our result seems to suggest that the trend of Ωm0\Omega_{m0} dependence for an evolving dark energy from a combination of the observational data sets is model-dependent.Comment: 16 pages, 15 figures, To appear in JCA

    Testing the viability of the interacting holographic dark energy model by using combined observational constraints

    Full text link
    Using the data coming from the new 182 Gold type Ia supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations, and the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey, H(z)H(z) and lookback time measurements, we have performed a statistical joint analysis of the interacting holographic dark energy model. Consistent parameter estimations show us that the interacting holographic dark energy model is a viable candidate to explain the observed acceleration of our universe.Comment: 15 pages, 9 figures, accepted for publication in JCA

    Observational constraint on generalized Chaplygin gas model

    Get PDF
    We investigate observational constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Union SNe Ia data, the observational Hubble data, the SDSS baryon acoustic peak and the five-year WMAP shift parameter. It is obtained that the best fit values of the GCG model parameters with their confidence level are As=0.730.06+0.06A_{s}=0.73^{+0.06}_{-0.06} (1σ1\sigma) 0.09+0.09^{+0.09}_{-0.09} (2σ)(2\sigma), α=0.090.12+0.15\alpha=-0.09^{+0.15}_{-0.12} (1σ1\sigma) 0.19+0.26^{+0.26}_{-0.19} (2σ)(2\sigma). Furthermore in this model, we can see that the evolution of equation of state (EOS) for dark energy is similar to quiessence, and its current best-fit value is w0de=0.96w_{0de}=-0.96 with the 1σ1\sigma confidence level 0.91w0de1.00-0.91\geq w_{0de}\geq-1.00.Comment: 9 pages, 5 figure

    Neural Network Parameterizations of Electromagnetic Nucleon Form Factors

    Full text link
    The electromagnetic nucleon form-factors data are studied with artificial feed forward neural networks. As a result the unbiased model-independent form-factor parametrizations are evaluated together with uncertainties. The Bayesian approach for the neural networks is adapted for chi2 error-like function and applied to the data analysis. The sequence of the feed forward neural networks with one hidden layer of units is considered. The given neural network represents a particular form-factor parametrization. The so-called evidence (the measure of how much the data favor given statistical model) is computed with the Bayesian framework and it is used to determine the best form factor parametrization.Comment: The revised version is divided into 4 sections. The discussion of the prior assumptions is added. The manuscript contains 4 new figures and 2 new tables (32 pages, 15 figures, 2 tables

    Cosmological constraints combining H(z), CMB shift and SNIa observational data

    Full text link
    Recently H(z) data obtained from differential ages of galaxies have been proposed as a new geometrical probe of dark energy. In this paper we use those data, combined with other background tests (CMB shift and SNIa data), to constrain a set of general relativistic dark energy models together with some other models motivated by extra dimensions. Our analysis rests mostly on Bayesian statistics, and we conclude that LCDM is at least substantially favoured, and that braneworld models are less favoured than general relativistic ones.Comment: 17 pages, 11 figures; improved discussion, new figures, updated to match published versio

    Spin Structure of the Proton from Polarized Inclusive Deep-Inelastic Muon-Proton Scattering

    Get PDF
    We have measured the spin-dependent structure function g1pg_1^p in inclusive deep-inelastic scattering of polarized muons off polarized protons, in the kinematic range 0.003<x<0.70.003 < x < 0.7 and 1GeV2<Q2<60GeV21 GeV^2 < Q^2 < 60 GeV^2. A next-to-leading order QCD analysis is used to evolve the measured g1p(x,Q2)g_1^p(x,Q^2) to a fixed Q02Q^2_0. The first moment of g1pg_1^p at Q02=10GeV2Q^2_0 = 10 GeV^2 is Γp=0.136±0.013(stat.)±0.009(syst.)±0.005(evol.)\Gamma^p = 0.136\pm 0.013(stat.) \pm 0.009(syst.)\pm 0.005(evol.). This result is below the prediction of the Ellis-Jaffe sum rule by more than two standard deviations. The singlet axial charge a0a_0 is found to be 0.28±0.160.28 \pm 0.16. In the Adler-Bardeen factorization scheme, Δg2\Delta g \simeq 2 is required to bring ΔΣ\Delta \Sigma in agreement with the Quark-Parton Model. A combined analysis of all available proton and deuteron data confirms the Bjorken sum rule.Comment: 33 pages, 22 figures, uses ReVTex and smc.sty. submitted to Physical Review

    Measurement of the Longitudinal Spin Transfer to Lambda and Anti-Lambda Hyperons in Polarised Muon DIS

    Get PDF
    The longitudinal polarisation transfer from muons to lambda and anti-lambda hyperons, D_LL, has been studied in deep inelastic scattering off an unpolarised isoscalar target at the COMPASS experiment at CERN. The spin transfers to lambda and anti-lambda produced in the current fragmentation region exhibit different behaviours as a function of x and xF . The measured x and xF dependences of D^lambda_LL are compatible with zero, while D^anti-lambda_LL tends to increase with xF, reaching values of 0.4 - 0.5. The resulting average values are D^lambda_LL = -0.012 +- 0.047 +- 0.024 and D^anti-lambda_LL = 0.249 +- 0.056 +- 0.049. These results are discussed in the frame of recent model calculations.Comment: 13 pages, 7 figure
    corecore