1,663 research outputs found

    Effects of virus infection on release of volatile organic compounds from insect-damaged bean, Phaseolus vulgaris

    Get PDF
    Insects can serve as important vectors of plant pathogens, especially viruses. Insect feeding on plants causes the systemic release of a wide range of plant volatile compounds that can serve as an indirect plant defense by attracting natural enemies of the herbivorous insect. Previous work suggests that the Mexican bean beetle (Epilachna varivestis) prefers to feed on plants infected by either of two viruses that it is known to transmit: Southern bean mosaic virus (SBMV) or Bean pod mottle virus (BPMV). A possible explanation for the preferred feeding on virus-infected tissues is that the beetles are attracted by volatile signals released from leaves. The purpose of this work was to determine whether volatile compounds from virus-infected plants are released differentially from those emitted by uninfected plants. To test the hypothesis, common bean plants (Phaseolus vulgaris cv. Black Valentine) were inoculated with either BPMV, SBMV, or a mixture of both viruses, and infected plants were compared to uninfected plants. An Ouchterlony assay was used with SBMVand BPMV-specific antisera to confirm the presence of virus in inoculated plants. RNA blot analysis was performed on tissue from each plant and indicated that a well-characterized defense gene, encoding phenylalanine ammonia-lyase (PAL), was not induced in systemic tissue following virus infection. Plant volatiles were collected—and analyzed via gas chromatography (GC)—from plants that were either undamaged or beetle-damaged. In undamaged plants, there were no measurable differences in profiles or quantities of compounds released by uninfected and virus-infected plants. After Mexican bean beetles were allowed to feed on plants for 48 h, injured plants released several compounds that were not released from undamaged plants. Lower quantities of volatile compounds were released from virus-infected plants suggesting that enhanced release of plant-derived volatile organic compounds is not the cause for attraction of Mexican bean beetles to virus-infected plants

    Nitrate source identification in the Baltic Sea using its isotopic ratios in combination with a Bayesian isotope mixing model

    Get PDF
    Nitrate (NO3-) is the major nutrient responsible for coastal eutrophication worldwide and its production is related to intensive food production and fossil-fuel combustion. In the Baltic Sea NO3- inputs have increased 4-fold over recent decades and now remain constantly high. NO3- source identification is therefore an important consideration in environmental management strategies. In this study focusing on the Baltic Sea, we used a method to estimate the proportional contributions of NO3- from atmospheric deposition, N-2 fixation, and runoff from pristine soils as well as from agricultural land. Our approach combines data on the dual isotopes of NO3- (delta N-15-NO3- and delta O-18-NO3-) in winter surface waters with a Bayesian isotope mixing model (Stable Isotope Analysis in R, SIAR). Based on data gathered from 47 sampling locations over the entire Baltic Sea, the majority of the NO3- in the southern Baltic was shown to derive from runoff from agricultural land (33-100 %), whereas in the northern Baltic, i.e. the Gulf of Bothnia, NO3- originates from nitrification in pristine soils (34-100 %). Atmospheric deposition accounts for only a small percentage of NO3- levels in the Baltic Sea, except for contributions from northern rivers, where the levels of atmospheric NO3- are higher. An additional important source in the central Baltic Sea is N-2 fixation by diazotrophs, which contributes 49-65% of the overall NO3- pool at this site. The results obtained with this method are in good agreement with source estimates based upon delta N-15 values in sediments and a three-dimensional ecosystem model, ERGOM. We suggest that this approach can be easily modified to determine NO3- sources in other marginal seas or larger near-coastal areas where NO3- is abundant in winter surface waters when fractionation processes are minor

    Comparison of Birkeland current observations during two magnetic cloud events with MHD simulations

    Get PDF
    Low altitude field-aligned current densities ob- tained from global magnetospheric simulations are compared with two-dimensional distributions of Birkeland currents at the topside ionosphere derived from magnetic field observa- tions by the constellation of Iridium satellites. We present the analysis of two magnetic cloud events, 17–19 August 2003 and 19–21 March 2001, where the interplanetary magnetic field (IMF) rotates slowly (∼10◦/h) to avoid time-aliasing in the magnetic perturbations used to calculate the Birkeland currents. In the August 2003 event the IMF rotates from southward to northward while maintaining a negative IMF By during much of the interval. During the March 2001 event the IMF direction varies from dawnward to southward to duskward. We find that the distributions of the Birkeland current densities in the simulations agree qualitatively with the observations for northward IMF. For southward IMF, the dayside Region-1 currents are reproduced in the simu- ◦ the ionospheric grids in the simulations and the observations is shown to have only secondary effect on the magnitudes of the Birkeland currents. The electric potentials in the simu- lation for southward IMF periods are twice as large as those obtained from measurements of the plasma drift velocities by DMSP, implying that the reconnection rates in the simulation are too large. Keywords. Ionosphere (Electric fields and currents; Ionosphere-magnetosphere interactions; Modeling and forecasting) 1 Introduction Global magnetohydrodynamic (MHD) models are the most comprehensive numerical tool for studying the coupling of energy and momentum of the solar wind into the Earth’s magnetosphere and ionosphere. A particular advantage of global MHD simulations is the ability to provide continu- ous temporal and spatial coverage of key physical parame- ters over the entire simulation volume. For this reason, MHD simulations have become one of the principal tools for study- ing space weather events such as the interaction of the Earth’s magnetosphere with coronal mass ejections (CMEs) (Ridley et al., 2002) as well as magnetic storms (Slinker et al., 1998; Goodrich et al., 1998) and substorms (Lyon et al., 1998; Lopez et al., 1998; Wiltberger et al., 2000). Since the simula- tion results are frequently used to interpret physical processes in the magnetosphere–ionosphere system, assessing their ac- curacy by comparison with observations is an important task. A number of such studies have been carried out in the past us- ing space-based (Frank et al., 1995; Raeder et al., 1997) and ground-based observations (Ridley et al., 2001), or a com- bination thereof (Fedder et al., 1998; Slinker et al., 1999). However, interpreting the discrepancies between model and observations is not straightforward because the observational lation, but appear on average 5 served location, while the nightside Region-1 currents and the Region-2 currents are largely under-represented. Com- parison of the observed and simulated Birkeland current dis- tributions, which are intimately related to the plasma drifts at the ionosphere, shows that the ionospheric convection pat- tern in the MHD model and its dependence on the IMF ori- entation is essentially correct. The Birkeland total currents in the simulations are about a factor of 2 larger than observed during southward IMF. For Bz\u3e0 the disparity in the total current is reduced and the simulations for purely northward IMF agree with the observations to within 10%. The dispar- ities in the magnitudes of the Birkeland currents between the observations and the simulation results are a combined effect of the simulation overestimating the ionospheric electric field and of the Iridium fits underestimating the magnetic pertur- bations

    Active current sheets and hot flow anomalies in Mercury's bow shock

    Full text link
    Hot flow anomalies (HFAs) represent a subset of solar wind discontinuities interacting with collisionless bow shocks. They are typically formed when the normal component of motional (convective) electric field points toward the embedded current sheet on at least one of its sides. The core region of an HFA contains hot and highly deflected ion flows and rather low and turbulent magnetic field. In this paper, we report first observations of HFA-like events at Mercury identified over a course of two planetary years. Using data from the orbital phase of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, we identify a representative ensemble of active current sheets magnetically connected to Mercury's bow shock. We show that some of these events exhibit unambiguous magnetic and particle signatures of HFAs similar to those observed earlier at other planets, and present their key physical characteristics. Our analysis suggests that Mercury's bow shock does not only mediate the flow of supersonic solar wind plasma but also provides conditions for local particle acceleration and heating as predicted by previous numerical simulations. Together with earlier observations of HFA activity at Earth, Venus and Saturn, our results confirm that hot flow anomalies are a common property of planetary bow shocks, and show that the characteristic size of these events is of the order of one planetary radius.Comment: 39 pages, 15 figures, 2 table

    MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    Get PDF
    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper

    Noncovalent Interactions by QMC: Speedup by One-Particle Basis-Set Size Reduction

    Full text link
    While it is empirically accepted that the fixed-node diffusion Monte-Carlo (FN-DMC) depends only weakly on the size of the one-particle basis sets used to expand its guiding functions, limits of this observation are not settled yet. Our recent work indicates that under the FN error cancellation conditions, augmented triple zeta basis sets are sufficient to achieve a benchmark level of 0.1 kcal/mol in a number of small noncovalent complexes. Here we report on a possibility of truncation of the one-particle basis sets used in FN-DMC guiding functions that has no visible effect on the accuracy of the production FN-DMC energy differences. The proposed scheme leads to no significant increase in the local energy variance, indicating that the total CPU cost of large-scale benchmark noncovalent interaction energy FN-DMC calculations may be reduced.Comment: ACS book chapter, accepte

    Ground-satellite coordinated study of the April 5, 1979 events: observation of 0+ cyclotron waves

    Get PDF
    In a period of particularly large magnetospheric disturbance, large amplitude pc2 waves were observed in the late dawn sector on GEOS-2 and in the vicinity of the foot-point of the satellite's field line. The waves have dominantly left-hand polarization and their frequency is closely correlated to the O+ gyrofrequency in the magnetosphere. After the start of the pc2 activity, the GEOS-2 particle detectors measured an enhanced flux of energetic O+ ions in the energy range from 0.9-16 keV. By calculating the dispersion of ion cyclotron waves in a multicomponent plasma, it is shown that the energetic O+ ions can destabilize the observed pc2 waves.           ARK: https://n2t.net/ark:/88439/y043392 Permalink: https://geophysicsjournal.com/article/110 &nbsp

    Kinetic-scale magnetic turbulence and finite Larmor radius effects at Mercury

    Full text link
    We use a nonstationary generalization of the higher-order structure function technique to investigate statistical properties of the magnetic field fluctuations recorded by MESSENGER spacecraft during its first flyby (01/14/2008) through the near Mercury's space environment, with the emphasis on key boundary regions participating in the solar wind -- magnetosphere interaction. Our analysis shows, for the first time, that kinetic-scale fluctuations play a significant role in the Mercury's magnetosphere up to the largest resolvable time scale ~20 s imposed by the signal nonstationarity, suggesting that turbulence at this planet is largely controlled by finite Larmor radius effects. In particular, we report the presence of a highly turbulent and extended foreshock system filled with packets of ULF oscillations, broad-band intermittent fluctuations in the magnetosheath, ion-kinetic turbulence in the central plasma sheet of Mercury's magnetotail, and kinetic-scale fluctuations in the inner current sheet encountered at the outbound (dawn-side) magnetopause. Overall, our measurements indicate that the Hermean magnetosphere, as well as the surrounding region, are strongly affected by non-MHD effects introduced by finite sizes of cyclotron orbits of the constituting ion species. Physical mechanisms of these effects and their potentially critical impact on the structure and dynamics of Mercury's magnetic field remain to be understood.Comment: 46 pages, 5 figures, 2 table
    corecore