395 research outputs found

    Cranial nerve palsy in cerebral venous sinus thrombosis and response to therapy

    Get PDF
    Clinical presentation of cerebral venous sinus thrombosis (CVST) is variable. The most common symptom of CVST is headache. Cranial nerve palsy in CVST is rare. We present a case of CVST due to oral contraceptive pill usage presented with cranial nerve palsy. A 28 year old female presented with complains of headache and blurring of vision. On further evaluation, we found left 6th cranial nerve palsy with diminished vision on both eyes (left more than right). Initial CT brain imaging was normal. Magnetic resonance venography revealed thrombosis of superior sagittal sinus, right transverse sinus, and right sigmoid sinus extending into the right internal jugular vein. At the end of 6 months of anticoagulation therapy there is marked improvement of vision and complete recovery of left 6th nerve palsy. Though cranial nerve palsy in CVST have been reported previously, new findings of this case is that more sign contralateral to site of lesion and variable response to therapy

    Determinants of linear growth faltering among children with moderate-to-severe diarrhea in the global enteric multicenter study

    Get PDF
    Background: Moderate-to-severe diarrhea (MSD) in the first 2 years of life can impair linear growth. We sought to determine risk factors for linear growth faltering and to build a clinical prediction tool to identify children most likely to experience growth faltering following an episode of MSD.Methods: Using data from the Global Enteric Multicenter Study of children 0-23 months old presenting with MSD in Africa and Asia, we performed log-binomial regression to determine clinical and sociodemographic factors associated with severe linear growth faltering (loss of ≥ 0.5 length-for-age z-score [LAZ]). Linear regression was used to estimate associations with ΔLAZ. A clinical prediction tool was developed using backward elimination of potential variables, and Akaike Information Criterion to select the best fit model.Results: Of the 5902 included children, mean age was 10 months and 43.2% were female. Over the 50-90-day follow-up period, 24.2% of children had severe linear growth faltering and the mean ΔLAZ over follow-up was - 0.17 (standard deviation [SD] 0.54). After adjustment for age, baseline LAZ, and site, several factors were associated with decline in LAZ: young age, acute malnutrition, hospitalization at presentation, non-dysenteric diarrhea, unimproved sanitation, lower wealth, fever, co-morbidity, or an IMCI danger sign. Compared to children 12-23 months old, those 0-6 months were more likely to experience severe linear growth faltering (adjusted prevalence ratio [aPR] 1.97 [95% CI 1.70, 2.28]), as were children 6-12 months of age (aPR 1.72 [95% CI 1.51, 1.95]). A prediction model that included age, wasting, stunting, presentation with fever, and presentation with an IMCI danger sign had an area under the ROC (AUC) of 0.67 (95% CI 0.64, 0.69). Risk scores ranged from 0 to 37, and a cut-off of 21 maximized sensitivity (60.7%) and specificity (63.5%).Conclusion: Younger age, acute malnutrition, MSD severity, and sociodemographic factors were associated with short-term linear growth deterioration following MSD. Data routinely obtained at MSD may be useful to predict children at risk for growth deterioration who would benefit from interventions

    Non-Random mtDNA Segregation Patterns Indicate a Metastable Heteroplasmic Segregation Unit in m.3243A>G Cybrid Cells

    Get PDF
    Many pathogenic mitochondrial DNA mutations are heteroplasmic, with a mixture of mutated and wild-type mtDNA present within individual cells. The severity and extent of the clinical phenotype is largely due to the distribution of mutated molecules between cells in different tissues, but mechanisms underpinning segregation are not fully understood. To facilitate mtDNA segregation studies we developed assays that measure m.3243A>G point mutation loads directly in hundreds of individual cells to determine the mechanisms of segregation over time. In the first study of this size, we observed a number of discrete shifts in cellular heteroplasmy between periods of stable heteroplasmy. The observed patterns could not be parsimoniously explained by random mitotic drift of individual mtDNAs. Instead, a genetically metastable, heteroplasmic mtDNA segregation unit provides the likely explanation, where stable heteroplasmy is maintained through the faithful replication of segregating units with a fixed wild-type/m.3243A>G mutant ratio, and shifts occur through the temporary disruption and re-organization of the segregation units. While the nature of the physical equivalent of the segregation unit remains uncertain, the factors regulating its organization are of major importance for the pathogenesis of mtDNA diseases

    Challenges facing early career academic cardiologists

    Get PDF
    Early career academic cardiologists currently face unprecedented challenges that threaten a highly valued career path. A team consisting of early career professionals and senior leadership members of American College of Cardiology completed this white paper to inform the cardiovascular medicine profession regarding the plight of early career cardiologists and to suggest possible solutions. This paper includes: 1) definition of categories of early career academic cardiologists; 2) general challenges to all categories and specific challenges to each category; 3) obstacles as identified by a survey of current early career members of the American College of Cardiology; 4) major reasons for the failure of physician-scientists to receive funding from National Institute of Health/National Heart Lung and Blood Institute career development grants; 5) potential solutions; and 6) a call to action with specific recommendations

    Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment

    Get PDF
    The LUX-ZEPLIN dark matter search aims to achieve a sensitivity to the WIMP-nucleon spin-independent cross-section down to (1–2)×10−12 pb at a WIMP mass of 40 GeV/c2. This paper describes the simulations framework that, along with radioactivity measurements, was used to support this projection, and also to provide mock data for validating reconstruction and analysis software. Of particular note are the event generators, which allow us to model the background radiation, and the detector response physics used in the production of raw signals, which can be converted into digitized waveforms similar to data from the operational detector. Inclusion of the detector response allows us to process simulated data using the same analysis routines as developed to process the experimental data

    An avian influenza A(H11N1) virus from a wild aquatic bird revealing a unique Eurasian-American genetic reassortment

    Get PDF
    Influenza surveillance in different wild bird populations is critical for understanding the persistence, transmission and evolution of these viruses. Avian influenza (AI) surveillance was undertaken in wild migratory and resident birds during the period 2007–2008, in view of the outbreaks of highly pathogenic AI (HPAI) H5N1 in poultry in India since 2006. In this study, we present the whole genome sequence data along with the genetic and virological characterization of an Influenza A(H11N1) virus isolated from wild aquatic bird for the first time from India. The virus was low pathogenicity and phylogenetic analysis revealed that it was distinct from reported H11N1 viruses. The hemagglutinin (HA) gene showed maximum similarity with A/semipalmatedsandpiper/Delaware/2109/2000 (H11N6) and A/shorebird/Delaware/236/2003(H11N9) while the neuraminidase (NA) gene showed maximum similarity with A/duck/Mongolia/540/2001(H1N1). The virus thus possessed an HA gene of the American lineage. The NA and other six genes were of the Eurasian lineage and showed closer relatedness to non-H11 viruses. Such a genetic reassortment is unique and interesting, though the pathways leading to its emergence and its future persistence in the avian reservoir is yet to be fully established

    Challenging compliance with international intellectual property norms in investor-state dispute settlement

    Get PDF
    Enforcing intellectual property (IP) rights abroad is not easy – not least because international IP treaties do not create global rights that can invoked in national courts. International investment law offers potential routes for overcoming these hurdles. Whenever investment treaties include IP rights as an investment and allow for investor-state dispute settlement (ISDS), investors can challenge host state measures affecting their IP rights in ISDS proceedings. As this article will show, this in turn offers a unique opportunity for invoking the standards of protection under international investment agreements (IIAs) to challenge host state compliance with international IP treaties. While challenging national IP regimes is an attractive option for right holders, these challenges potentially amount to a sea-change for the international IP regime and cause serious concern for host states. I however argue that most of the routes pursued by right holders under IIAs are unlikely to be successful. Investment protection standards such as fair and equitable treatment, umbrella clauses and most-favored nation treatment should not be construed to allow invoking alleged breaches of international IP norms in ISDS. Some IIAs however contain clauses that subject expropriation claims against compulsory licenses and other IP limitations to a test of consistency with the international IP rules governing these limitations. As they offer the only feasible route for investors to challenge host state compliance with international IP treaties, I review the implications of these clauses, recent reform proposals and suggest alternative mechanisms for aligning international IP and investment protection based on general international law.This is the author accepted manuscript. The final version is available from Oxford University Press via http://dx.doi.org/10.1093/jiel/jgw00

    The Spread of Tomato Yellow Leaf Curl Virus from the Middle East to the World

    Get PDF
    The ongoing global spread of Tomato yellow leaf curl virus (TYLCV; Genus Begomovirus, Family Geminiviridae) represents a serious looming threat to tomato production in all temperate parts of the world. Whereas determining where and when TYLCV movements have occurred could help curtail its spread and prevent future movements of related viruses, determining the consequences of past TYLCV movements could reveal the ecological and economic risks associated with similar viral invasions. Towards this end we applied Bayesian phylogeographic inference and recombination analyses to available TYLCV sequences (including those of 15 new Iranian full TYLCV genomes) and reconstructed a plausible history of TYLCV's diversification and movements throughout the world. In agreement with historical accounts, our results suggest that the first TYLCVs most probably arose somewhere in the Middle East between the 1930s and 1950s (with 95% highest probability density intervals 1905–1972) and that the global spread of TYLCV only began in the 1980s after the evolution of the TYLCV-Mld and -IL strains. Despite the global distribution of TYLCV we found no convincing evidence anywhere other than the Middle East and the Western Mediterranean of epidemiologically relevant TYLCV variants arising through recombination. Although the region around Iran is both the center of present day TYLCV diversity and the site of the most intensive ongoing TYLCV evolution, the evidence indicates that the region is epidemiologically isolated, which suggests that novel TYLCV variants found there are probably not direct global threats. We instead identify the Mediterranean basin as the main launch-pad of global TYLCV movements
    corecore