540 research outputs found

    Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes

    Get PDF
    We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass haloes hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, anisotropic streaming and diffusion along magnetic field lines, and collisional and streaming losses, with constant parallel diffusivity κ∼3×10²⁹ cm² s⁻¹ chosen to match γ-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass haloes at z ≲ 1–2. The gas in these ‘CR-dominated’ haloes differs significantly from runs without CRs: the gas is primarily cool (a few ∼10⁴), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the ‘low’ and ‘mid’ ions in this diffuse cool gas is dominated by photoionization, with O VI columns ≳10^(14.5) cm⁻² at distances ≳150kpc⁠. CR and thermal gas pressure are locally anticorrelated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same haloes are primarily warm/hot (⁠T≳10⁵) with thermal pressure balancing gravity, collisional ionization dominates, O VI columns are lower and Ne VIII higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase

    Constraining reionization using 21 cm observations in combination with CMB and Lyman-alpha forest data

    Full text link
    In this paper, we explore the constraints on the reionization history that are provided by current observations of the Lyman-alpha forest and the CMB. Rather than using a particular semi-analytic model, we take the novel approach of parametrizing the ionizing sources with arbitrary functions, and perform likelihood analyses to constrain possible reionization histories. We find model independent conclusions that reionization is likely to be mostly complete by z=8 and that the IGM was 50% ionized at z=9-10. Upcoming low-frequency observations of the redshifted 21 cm line of neutral hydrogen are expected to place significantly better constraints on the hydrogen neutral fraction at 6<z<12. We use our constraints on the reionization history to predict the likely amplitude of the 21 cm power spectrum and show that observations with the highest signal-to-noise ratio will most likely be made at frequencies corresponding to z=9-10. This result provides an important guide to the upcoming 21 cm observations. Finally, we assess the impact that measurement of the neutral fraction will have on our knowledge of reionization and the early source population. Our results show that a single measurement of the neutral fraction mid-way through the reionization era will significantly enhance our knowledge of the entire reionization history.Comment: 15 pages, 16 figures, submitted to MNRA

    A Proper Motion for the Pulsar Wind Nebula G359.23-0.82, "the Mouse," Associated with the Energetic Radio Pulsar J1747-2958

    Full text link
    The "Mouse" (PWN G359.23-0.82) is a spectacular bow shock pulsar wind nebula, powered by the radio pulsar J1747-2958. The pulsar and its nebula are presumed to have a high space velocity, but their proper motions have not been directly measured. Here we present 8.5 GHz interferometric observations of the Mouse nebula with the Very Large Array, spanning a time baseline of 12 yr. We measure eastward proper motion for PWN G359.23-0.82 (and hence indirectly for PSR J1747-2958) of 12.9+/-1.8 mas/yr, which at an assumed distance of 5 kpc corresponds to a transverse space velocity of 306+/-43 km/s. Considering pressure balance at the apex of the bow shock, we calculate an in situ hydrogen number density of approximately 1.0(-0.2)(+0.4) cm^(-3) for the interstellar medium through which the system is traveling. A lower age limit for PSR J1747-2958 of 163(-20)(+28) kyr is calculated by considering its potential birth site. The large discrepancy with the pulsar's spin-down age of 25 kyr is possibly explained by surface dipole magnetic field growth on a timescale ~15 kyr, suggesting possible future evolution of PSR J1747-2958 to a different class of neutron star. We also argue that the adjacent supernova remnant G359.1-0.5 is not physically associated with the Mouse system but is rather an unrelated object along the line of sight.Comment: 8 pages, 4 figures, emulateapj format. Accepted for publication in The Astrophysical Journa

    Highly Ionized Collimated Outflow from HE 0238 - 1904

    Full text link
    We present a detailed analysis of a highly ionized, multiphased and collimated outflowing gas detected through O V, O VI, Ne VIII and Mg X absorption associated with the QSO HE 0238 - 1904 (z_em ~ 0.629). Based on the similarities in the absorption line profiles and estimated covering fractions, we find that the O VI and Ne VIII absorption trace the same phase of the absorbing gas. Simple photoionization models can reproduce the observed N(Ne VIII), N(O VI) and N(Mg X) from a single phase whereas the low ionization species (e.g. N III, N IV, O IV) originate from a different phase. The measured N(Ne VIII)/N(O VI) ratio is found to be remarkably similar (within a factor of ~ 2) in several individual absorption components kinematically spread over ~ 1800 km/s. Under photoionization this requires a fine tuning between hydrogen density (nH) and the distance of the absorbing gas from the QSO. Alternatively this can also be explained by collisional ionization in hot gas with T > 10^{5.7} K. Long-term stability favors the absorbing gas being located outside the broad line region (BLR). We speculate that the collimated flow of such a hot gas could possibly be triggered by the radio jet interaction.Comment: Minor revision (accepted for publication in MNRAS letter

    Pulsar science with the Five hundred metre Aperture Spherical Telescope

    Get PDF
    With a collecting area of 70 000 m^2, the Five hundred metre Aperture Spherical Telescope (FAST) will allow for great advances in pulsar astronomy. We have performed simulations to estimate the number of previously unknown pulsars FAST will find with its 19-beam or possibly 100-beam receivers for different survey strategies. With the 19-beam receiver, a total of 5200 previously unknown pulsars could be discovered in the Galactic plane, including about 460 millisecond pulsars (MSPs). Such a survey would take just over 200 days with eight hours survey time per day. We also estimate that, with about 80 six-hour days, a survey of M31 and M33 could yield 50--100 extra-Galactic pulsars. A 19-beam receiver would produce just under 500 MB of data per second and requires about 9 tera-ops to perform the major part of a real time analysis. We also simulate the logistics of high-precision timing of MSPs with FAST. Timing of the 50 brightest MSPs to a signal-to-noise of 500 would take about 24 hours per epoch.Comment: 9 pages, 10 figures; accepted for publication in A&

    The High Time Resolution Universe Survey VI: An Artificial Neural Network and Timing of 75 Pulsars

    Get PDF
    We present 75 pulsars discovered in the mid-latitude portion of the High Time Resolution Universe survey, 54 of which have full timing solutions. All the pulsars have spin periods greater than 100 ms, and none of those with timing solutions are in binaries. Two display particularly interesting behaviour; PSR J1054-5944 is found to be an intermittent pulsar, and PSR J1809-0119 has glitched twice since its discovery. In the second half of the paper we discuss the development and application of an artificial neural network in the data-processing pipeline for the survey. We discuss the tests that were used to generate scores and find that our neural network was able to reject over 99% of the candidates produced in the data processing, and able to blindly detect 85% of pulsars. We suggest that improvements to the accuracy should be possible if further care is taken when training an artificial neural network; for example ensuring that a representative sample of the pulsar population is used during the training process, or the use of different artificial neural networks for the detection of different types of pulsars.Comment: 15 pages, 8 figure

    Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes

    Get PDF
    We investigate the impact of cosmic rays (CRs) on the circumgalactic medium (CGM) in FIRE-2 simulations, for ultra-faint dwarf through Milky Way (MW)-mass haloes hosting star-forming (SF) galaxies. Our CR treatment includes injection by supernovae, anisotropic streaming and diffusion along magnetic field lines, and collisional and streaming losses, with constant parallel diffusivity κ∼3×10²⁹ cm² s⁻¹ chosen to match γ-ray observations. With this, CRs become more important at larger halo masses and lower redshifts, and dominate the pressure in the CGM in MW-mass haloes at z ≲ 1–2. The gas in these ‘CR-dominated’ haloes differs significantly from runs without CRs: the gas is primarily cool (a few ∼10⁴), and the cool phase is volume-filling and has a thermal pressure below that needed for virial or local thermal pressure balance. Ionization of the ‘low’ and ‘mid’ ions in this diffuse cool gas is dominated by photoionization, with O VI columns ≳10^(14.5) cm⁻² at distances ≳150kpc⁠. CR and thermal gas pressure are locally anticorrelated, maintaining total pressure balance, and the CGM gas density profile is determined by the balance of CR pressure gradients and gravity. Neglecting CRs, the same haloes are primarily warm/hot (⁠T≳10⁵) with thermal pressure balancing gravity, collisional ionization dominates, O VI columns are lower and Ne VIII higher, and the cool phase is confined to dense filaments in local thermal pressure equilibrium with the hot phase
    corecore