658 research outputs found
Helium Cryoplant Off-line Commissioning and Operator Training: Two Applications of the PROCOS Simulation System at CERN
The off-line commissioning step, through reliable simulation of physical models, aims to correct and validate control systems before their implementation into real equipments. It prepares and minimizes plant commissioning phase and at the same time validates the efficiency of the new process control logic. This paper describes how different CERN/UNICOS cryogenic control systems have been pre-commissioned off-line, using the CERN cryogenic simulation environment PROCOS. Some examples are reported. Additionally the presented simulation environment will be used for operator training. The second part of the paper will presents the simulation platform and the first feedback from the operation crew
Specification of Eight 2400 W @ 1.8 K Refrigeration Units for the LHC
The cooling capacity below 2 K for the superconducting magnets in the Large Hadron Collider (LHC), at CERN, will be provided by eight refrigeration units at 1.8 K, each of them coupled to a 4.5 K refrigerator. Taking into account the cryogenic architecture of the LHC and corresponding process design constraints, a reference solution based on a combination of cold centrifugal and warm volumetric compressors was established in 1997. The process and technical requirements expressed in the specification issued in 1998 and the procurement scenario based on pre-series acceptance prior to final series delivery between 2002 and 2004 are presented in this paper
On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment
During the CIRCLE-2 experiment carried out over Western Europe in May 2007, combined in situ and remote sensing observations allowed to describe microphysical and optical properties near-top of an overshooting convective cloud (11 080 m/−58 °C). The airborne measurements were performed with the DLR Falcon aircraft specially equipped with a unique set of instruments for the extensive in situ cloud measurements of microphysical and optical properties (Polar Nephelometer, FSSP-300, Cloud Particle Imager and PMS 2-D-C) and nadir looking remote sensing observations (DLR WALES Lidar). Quasi-simultaneous space observations from MSG/SEVIRI, CALIPSO/CALIOP-WFC-IIR and CloudSat/CPR combined with airborne RASTA radar reflectivity from the French Falcon aircraft flying above the DLR Falcon depict very well convective cells which overshoot by up to 600 m the tropopause level. Unusual high values of the concentration of small ice particles, extinction, ice water content (up to 70 cm−3, 30 km−1 and 0.5 g m−3, respectively) are experienced. The mean effective diameter and the maximum particle size are 43 μm and about 300 μm, respectively. This very dense cloud causes a strong attenuation of the WALES and CALIOP lidar returns. The SEVIRI retrieved parameters confirm the occurrence of small ice crystals at the top of the convective cell. Smooth and featureless phase functions with asymmetry factors of 0.776 indicate fairly uniform optical properties. Due to small ice crystals the power-law relationship between ice water content (IWC) and radar reflectivity appears to be very different from those usually found in cirrus and anvil clouds. For a given equivalent reflectivity factor, IWCs are significantly larger for the overshooting cell than for the cirrus. Assuming the same prevalent microphysical properties over the depth of the overshooting cell, RASTA reflectivity profiles scaled into ice water content show that retrieved IWC up to 1 g m−3 may be observed near the cloud top. Extrapolating the relationship for stronger convective clouds with similar ice particles, IWC up to 5 g m−3 could be experienced with reflectivity factors no larger than about 20 dBZ. This means that for similar situations, indication of rather weak radar echo does not necessarily warn the occurrence of high ice water content carried by small ice crystals. All along the cloud penetration the shape of the ice crystals is dominated by chain-like aggregates of frozen droplets. Our results confirm previous observations that the chains of ice crystals are found in a continental deep convective systems which are known generally to generate intense electric fields causing efficient ice particle aggregation processes. Vigorous updrafts could lift supercooled droplets which are frozen extremely rapidly by homogeneous nucleation near the −37 °C level, producing therefore high concentrations of very small ice particles at upper altitudes. They are sufficient to deplete the water vapour and suppress further nucleation as confirmed by humidity measurements. These observations address scientific issues related to the microphysical properties and structure of deep convective clouds and confirm that particles smaller than 50 μm may control the radiative properties in convective-related clouds. These unusual observations may also provide some possible insights regarding engineering issues related to the failure of jet engines commonly used on commercial aircraft during flights through areas of high ice water content. However, large uncertainties of the measured and derived parameters limit our observations
Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic
Airborne lidar and in-situ measurements of the aerosol properties were conducted between Svalbard Island and Scandinavia in April 2008. Evidence of aerosol transport from Europe and Asia is given. The analysis of the aerosol optical properties based on a multiwavelength lidar (355, 532, 1064 nm) including volume depolarization at 355 nm aims at distinguishing the role of the different aerosol sources (Siberian wild fires, Eastern Asia and European anthropogenic emissions). Combining, first aircraft measurements, second FLEXPART simulations with a calculation of the PBL air fraction originating from the three different mid-latitude source regions, and third level-2 CALIPSO data products (i.e. backscatter coefficient 532 nm,volume depolarization and color ratio between 1064 and 532 nm in aerosol layers) along the transport pathways, appears a valuable approach to identify the role of the different aerosol sources even after a transport time larger than 4 days. Optical depth of the aerosol layers are always rather small (<4%) while transported over the Arctic and ratio of the total attenuated backscatter (i.e. including molecular contribution) provide more stable result than conventional aerosol backscatter ratio. Above Asia, CALIPSO data indicate more depolarization (up to 15%) and largest color ratio (>0.5) for the northeastern Asia emissions (i.e. an expected mixture of Asian pollution and dust), while low depolarization together with smaller and quasi constant color ratio (≈0.3) are observed for the Siberian biomass burning emissions. A similar difference is visible between two layers observed by the aircraft above Scandinavia. The analysis of the time evolution of the aerosol optical properties revealed by CALIPSO between Asia and Scandinavia shows a gradual decrease of the aerosol backscatter, depolarization ratio and color ratio which suggests the removal of the largest particles in the accumulation mode. A similar study conducted for a European plume has shown aerosol optical properties intermediate between the two Asian sources with color ratio never exceeding 0.4 and moderate depolarization ratio being always less than 8%, i.e. less aerosol from the accumulation mode
Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation
Ruthenacycles, which are easily prepared in a single step by reaction between enantiopure aromatic amines and [Ru(arene)Cl2]2 in the presence of NaOH and KPF6, are very good asymmetric transfer hydrogenation catalysts. A range of aromatic ketones were reduced using isopropanol in good yields with ee’s up to 98%. Iridacycles, which are prepared in similar fashion from [IrCp*Cl2]2 are excellent catalysts for the racemisation of secondary alcohols and chlorohydrins at room temperature. This allowed the development of a new dynamic kinetic resolution of chlorohydrins to the enantiopure epoxides in up to 90% yield and 98% enantiomeric excess (ee) using a mutant of the enzyme Haloalcohol dehalogenase C and an iridacycle as racemisation catalyst.
Use of Treponema pallidum PCR in Testing of Ulcers for Diagnosis of Primary Syphilis(1.).
Treponema pallidum PCR (Tp-PCR) has been noted as a valid method for diagnosing syphilis. We compared Tp-PCR to a combination of darkfield microscopy (DFM), the reference method, and serologic testing in a cohort of 273 patients from France and Switzerland and found the diagnostic accuracy of Tp-PCR was higher than that for DFM
Quasi-long range order in the random anisotropy Heisenberg model
The large distance behaviors of the random field and random anisotropy
Heisenberg models are studied with the functional renormalization group in
dimensions. The random anisotropy model is found to have a phase
with the infinite correlation radius at low temperatures and weak disorder. The
correlation function of the magnetization obeys a power law . The
magnetic susceptibility diverges at low fields as . In the random field model the correlation radius is found
to be finite at the arbitrarily weak disorder.Comment: 4 pages, REVTe
Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010
© Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 LicenseAirborne lidar and in-situ measurements of aerosols and trace gases were performed in volcanic ash plumes over Europe between Southern Germany and Iceland with the Falcon aircraft during the eruption period of the Eyjafjalla1 volcano between 19 April and 18 May 2010. Flight planning and measurement analyses were supported by a refined Meteosat ash product and trajectory model analysis. The volcanic ash plume was observed with lidar directly over the volcano and up to a distance of 2700 km downwind, and up to 120 h plume ages. Aged ash layers were between a few 100 m to 3 km deep, occurred between 1 and 7 km altitude, and were typically 100 to 300 km wide. Particles collected by impactors had diameters up to 20 μm diameter, with size and age dependent composition. Ash mass concentrations were derived from optical particle spectrometers for a particle density of 2.6 g cm-3 and various values of the refractive index (RI, real part: 1.59; 3 values for the imaginary part: 0, 0.004 and 0.008). The mass concentrations, effective diameters and related optical properties were compared with ground-based lidar observations. Theoretical considerations of particle sedimentation constrain the particle diameters to those obtained for the lower RI values. The ash mass concentration results have an uncertainty of a factor of two. The maximum ash mass concentration encountered during the 17 flights with 34 ash plume penetrations was below 1 mg m-3. The Falcon flew in ash clouds up to about 0.8 mg m-3 for a few minutes and in an ash cloud with approximately 0.2 mg -3 mean-concentration for about one hour without engine damage. The ash plumes were rather dry and correlated with considerable CO and SO2 increases and O3 decreases. To first order, ash concentration and SO2 mixing ratio in the plumes decreased by a factor of two within less than a day. In fresh plumes, the SO2 and CO concentration increases were correlated with the ash mass concentration. The ash plumes were often visible slantwise as faint dark layers, even for concentrations below 0.1 mg m-3. The large abundance of volatile Aitken mode particles suggests previous nucleation of sulfuric acid droplets. The effective diameters range between 0.2 and 3 μm with considerable surface and volume contributions from the Aitken and coarse mode aerosol, respectively. The distal ash mass flux on 2 May was of the order of 500 (240-1600) kgs -1. The volcano induced about 10 (2.5-50) Tg of distal ash mass and about 3 (0.6-23) Tg of SO2 during the whole eruption period. The results of the Falcon flights were used to support the responsible agencies in their decisions concerning air traffic in the presence of volcanic ash.Peer reviewe
Quasi-long-range order in the random anisotropy Heisenberg model: functional renormalization group in 4-\epsilon dimensions
The large distance behaviors of the random field and random anisotropy O(N)
models are studied with the functional renormalization group in 4-\epsilon
dimensions. The random anisotropy Heisenberg (N=3) model is found to have a
phase with the infinite correlation radius at low temperatures and weak
disorder. The correlation function of the magnetization obeys a power law <
m(x) m(y) >\sim |x-y|^{-0.62\epsilon}. The magnetic susceptibility diverges at
low fields as \chi \sim H^{-1+0.15\epsilon}. In the random field O(N) model the
correlation radius is found to be finite at the arbitrarily weak disorder for
any N>3. The random field case is studied with a new simple method, based on a
rigorous inequality. This approach allows one to avoid the integration of the
functional renormalization group equations.Comment: 12 pages, RevTeX; a minor change in the list of reference
Cirrus cloud occurrence as function of ambient relative humidity: A comparison of observations from the Southern and Northern Hemisphere midlatitudes obtained during the INCA experiment
International audienceThe occurrence frequency of cirrus clouds as function of ambient relative humidity over ice, based on in-situ observations performed during the INCA experiment, show a clear difference between the campaign carried out at Southern Hemisphere (SH) midlatitudes and the campaign carried out at Northern Hemisphere (NH) midlatitudes. At a given relative humidity above ice saturation, clouds are more frequent in the NH. At relative humidities near ice saturation, clouds defined as containing particles with sizes larger than 0.55 µm diameter and an integral number density above 0.2 cm-3 were present 70% of the time during the SH campaign, whereas clouds where present 95% of the time during the NH campaign. Using a size threshold of 1 µm diameter to define the presence of clouds result in a less frequent occurrence of 60% of the time in the SH campaign and 75% of the time in the NH campaign. The data show that the presence of particles is a common characteristic of cirrus clouds. Clouds at ice saturation defined as having crystal sizes of at least 5 µm diameter and a number density exceeding 0.001 cm-3 were present in about 80% of the time during the SH campaign, and almost 90% of the time during the NH campaign. The observations reveal a significant cloud presence fraction at humidities well below ice saturation. Local minima in the cloud presence fraction as a function of relative humidity are interpreted as systematic underestimation of cloud presence because cloud particles may become invisible to cloud probes. Based on this interpretation the data suggests that clouds in the SH form preferentially at relative humidities between 140 and 155%, whereas clouds in the NH formed at relative humidities less than 130%. A simple assumption about the probability to reach successively higher humidities in an ice supersaturated air parcel provides a model that explains the main trend of the cloud presence fraction as function of relative humidity. If adiabatic processes are assumed a cloud water content distribution can be derived from this probability model. The resulting distribution agrees well in shape compared to observations, but the observed mean cloud water content is less than expected from simply adiabatic processes
- …
