34 research outputs found

    Effect of Activated Carbon Amendment on Bacterial Community Structure and Functions in a PAH Impacted Urban Soil

    Get PDF
    ABSTRACT: We collected urban soil samples impacted by polycyclic aromatic hydrocarbons (PAHs) from a sorbent-based remediation field trial to address concerns about unwanted side-effects of 2 % powdered (PAC) or granular (GAC) activated carbon amendment on soil microbiology and pollutant biodegradation. After three years, total microbial cell counts and respiration rates were highest in the GAC amended soil. The predominant bacterial community structure derived from denaturing gradient gel electrophoresis (DGGE) shifted more strongly with time than in response to AC amendment. DGGE band sequencing revealed the presence of taxa with closest affiliations either to known PAH degraders, e.g. Rhodococcus jostii RHA-1, or taxa known to harbor PAH degraders, e.g. Rhodococcus erythropolis, in all soils. Quantification by real-time polymerase chain reaction yielded similar dioxygenases gene copy numbers in unamended, PAC-, or GACamended soil. PAH availability assessments in batch tests showed th

    Remediation of Polychlorinated Biphenyl Impacted Sediment by Concurrent Bioaugmentation with Anaerobic Halorespiring and Aerobic Degrading Bacteria

    No full text
    Bioremediation of sediments contaminated with commercial polychlorinated biphenyls (PCBs) is potentially achievable by the sequential activity of anaerobic halorespiration to convert higher chlorinated congeners to less chlorinated congeners that are susceptible to aerobic respiratory degradation. The efficacy of bioaugmentation with anaerobic halorespiring Dehalobium chlorocoercia DF1 and aerobic Burkholderia xenovorans LB400 added concurrently with granulated activated carbon (GAC) as a delivery system was determined in 2 L laboratory mesocosms containing weathered Aroclor-contaminated sediment from Baltimore Harbor, MD, USA. The greatest effect was seen in the mesocosm bioaugmented with both DF1 and LB400 together, which resulted in an 80% decrease by mass of PCBs, from 8 to <2 mg/kg after 120 days. There was no significant increase in lesser-chlorinated congeners, indicating that both anaerobic dechlorination by DF1 and aerobic degradation by LB400 occurred. In contrast, nonbioaugmented controls containing filtered culture supernatant showed only a 25% decrease in total levels of PCBs after 365 days, which was likely due to biostimulation of the indigenous population by the medium. Direct colony counts and molecular analysis targeting a putative reductive dehalogenase gene of <i>D. chlorocoercia</i> or the <i>bphA</i> gene of LB400 showed the presence of viable DF1 and LB400 in bioaugmented mesocosms after 365 days, indicating that both nonindigenous strains were sustainable within the indigenous microbial community. These results suggest that an in situ treatment employing the simultaneous application of anaerobic and aerobic microorganisms could be an effective and environmentally sustainable strategy to reduce PCBs levels in contaminated sediment

    River organic matter shapes microbial communities in the sediment of the Rhône prodelta

    No full text
    International audienceMicrobial-driven organic matter (OM) degradation is a cornerstone of benthic community functioning, but little is known about the relation between OM and community composition. Here we use Rhône prodelta sediments to test the hypothesis that OM quality and source are fundamental structuring factors for bacterial communities in benthic environments. Sampling was performed on four occasions corresponding to contrasting river-flow regimes, and bacterial communities from seven different depths were analyzed by pyrosequencing of 16S rRNA gene amplicons. The sediment matrix was characterized using over 20 environmental variables including bulk parameters (for example, total nitrogen, carbon, OM, porosity and particle size), as well as parameters describing the OM quality and source (for example, pigments, total lipids and amino acids and δ13C), and molecular-level biomarkers like fatty acids. Our results show that the variance of the microbial community was best explained by δ13C values, indicative of the OM source, and the proportion of saturated or polyunsaturated fatty acids, describing OM lability. These parameters were traced back to seasonal differences in the river flow, delivering OM of different quality and origin, and were directly associated with several frequent bacterial operational taxonomic units. However, the contextual parameters, which explained at most 17% of the variance, were not always the key for understanding the community assembly. Co-occurrence and phylogenetic diversity analysis indicated that bacteria–bacteria interactions were also significant. In conclusion, the drivers structuring the microbial community changed with time but remain closely linked with the river OM input
    corecore