137 research outputs found

    Discrete-continuum approach to assess 3D failure modes of masonry arch bridges

    Get PDF
    There are two main objectives of this research. First, a full masonry arch bridge with all structural components are considered. The failure mechanism of spandrel wall and backfill-masonry interaction are successfully simulated using a 3D discrete-continuum model as validated by previously published experimental data. Moreover, the influence of the frictional resistance between soil and masonry components is discussed. Second, two different skew arches, with different bond patterns, are analysed to understand the influence of construction method (helicoidal and false) on the damage pattern and capacity. The results of the analysis demonstrated that discrete and mixed discrete-continuum approaches can predict complex 3D collapse mechanisms of masonry arch bridges and provides detailed information about their damage progression.(undefined

    Simulation of uniaxial tensile behavior of quasi-brittle materials using softening contact models in DEM

    Get PDF
    This study proposes new contact models to be incorporated into discrete element method (DEM) to more accurately simulate the tensile softening in quasi-brittle materials, such as plain concrete and masonry with emphasis on fracture mechanism and post-peak response. For this purpose, a plain concrete specimen (double notched) and stack bonded masonry prism under direct tensile test are modeled. Furthermore, mixed mode crack propagation is investigated in concrete and brickwork assemblages. Two modeling approaches are proposed, the simplified and detailed meso modeling, both based on DEM. In the simplified meso-model, a smooth contact surface is considered between two separate blocks, whereas the internal structure of the material is explicitly represented as a tessellation into random polyhedral blocks in the detailed meso-model. Furthermore, recently developed tensile softening contact constitutive models implemented into a commercial discrete element code (3DEC) are used to simulate the softening behavior of concrete and masonry. As an important novel contribution, it is indicated that the proposed computational models successfully capture the complete (pre- and post-peak) material behavior and realistically replicate the cracking mechanism. Additionally, a sensitivity analysis demonstrates the influence of the various micro-contact parameters on the overall response of the examined materials.Authors would like to express their gratitude to Itasca Educational Partnership Program (IEP) for their kind support and providing 3DEC softwar

    In-plane static response of dry-joint masonry arch-pier structures

    Get PDF
    The majority of historical masonry structures include arches and vaults, constructed with or without (dry-joint) any mortar. This paper focuses on dry-joint masonry, because it is common all around the world among architectural heritage. Furthermore, even if there was a mortar in the original construction, it typically suffers from deterioration over its lifetime, often causing total loss of mortar in many of the joints. Due to large horizontal thrust that can be produced, depending on their geometry, arches are typically supported by heavy buttresses. These structures tend to be difficult to model due to their nonlinear nature and inherent discontinuity, which makes it challenging to evaluate their stability. In that context, it is necessary to have realistic numerical models to better diagnose their structural behaviour in a seismic event and, ultimately, to perform only necessary and beneficial interventions. The main goal of this paper is to assess the seismic performance of various dry-joint arch forms with different masonry pier types (i.e. monolithic and regularly coursed) subjected to incrementally increasing lateral loads proportional to the mass (pushover). To achieve this goal, a parametric study is performed on arch curvature and pier morphology. Moreover, the influence of steel tie-rod reinforcement is also examined on the proposed masonry models. These complex masonry arch systems can be simulated with discrete element modeling (DEM) approach. In this research, a commercial three-dimensional discrete element code, 3DEC, is used; in which masonry units are modeled as distinct blocks with zero tensile strength at their joints. The results reveal that pointed arches provide better seismic resistance than the circular arch form. Furthermore, implemented steel tie-rods yield significant increase in stability for the arch-pier structures, which is quantified on different arch curvatures.- (undefined

    Ground truth deficiencies in software engineering: when codifying the past can be counterproductive

    Get PDF
    Many software engineering tools build and evaluate their models based on historical data to support development and process decisions. These models help us answer numerous interesting questions, but have their own caveats. In a real-life setting, the objective function of human decision-makers for a given task might be influenced by a whole host of factors that stem from their cognitive biases, subverting the ideal objective function required for an optimally functioning system. Relying on this data as ground truth may give rise to systems that end up automating software engineering decisions by mimicking past sub-optimal behaviour. We illustrate this phenomenon and suggest mitigation strategies to raise awareness

    Tensile fracture mechanism of masonry wallettes parallel to bed joints: A stochastic discontinuum analysis

    Get PDF
    Nonhomogeneous material characteristics of masonry lead to complex fracture mechanisms, which require substantial analysis regarding the influence of masonry constituents. In this context, this study presents a discontinuum modeling strategy, based on the discrete element method, developed to investigate the tensile fracture mechanism of masonry wallettes parallel to the bed joints considering the inherent variation in the material properties. The applied numerical approach utilizes polyhedral blocks to represent masonry and integrate the equations of motion explicitly to compute nodal velocities for each block in the system. The mechanical interaction between the adjacent blocks is computed at the active contact points, where the contact stresses are calculated and updated based on the implemented contact constitutive models. In this research, different fracture mechanisms of masonry wallettes under tension are explored developing at the unit–mortar interface and/or within the units. The contact properties are determined based on certain statistical variations. Emphasis is given to the influence of the material properties on the fracture mechanism and capacity of the masonry assemblages. The results of the analysis reveal and quantify the importance of the contact properties for unit and unit–mortar interfaces (e.g., tensile strength, cohesion, and friction coefficient) in terms of capacity and corresponding fracture mechanism for masonry wallettes.This research received no external funding

    Simulation of masonry arch bridges using 3D discrete element modeling

    Get PDF
    The analysis of masonry arch bridges is still a challenge for engineers due to its complex and nonlinear behavior. In practice, structural behavior of masonry arch bridges is studied by following relatively simple methods, e.g. limit analysis, which does not require a significant number of parameters. Two-dimensional nonlinear finite element models are also common in the literature; however, these do not reflect the full structural response, since they neglect the out-of-plane actions. These models neglect spandrel walls, 3D point load effect and skew arches, among other effects. The objective of this study is to present a methodology that can simulate three-dimensional masonry arch bridge behavior comprehensively and can include various possible failure mechanisms. Discrete element method (DEM), which is a discontinuum approach, is used to understand the influence of essential structural components, such as the arch barrel, spandrel wall and back-fill material on several masonry arch structures. The masonry units are modeled using discrete blocks and back-fill material is generated as a continuum mesh, based on the plasticity theory. Load carrying capacity and related collapse mechanisms are investigated through a set of parametric studies on the mechanical properties of back-fill material. Out-of-plane spandrel wall failures were further explored by taking advantage of a discontinuous approach. The results indicated that soil characteristics (elastic modulus, internal friction angle and cohesion) have remarkable influence on the behavior and load carrying capacity of the masonry arch bridges. Further, the analyses are also validated with previously published experimental work as well as an existing historical bridge.- (undefined

    Comparison of in-plane and out-of-plane failure modes of masonry arch bridges using discontinuum analysis

    Get PDF
    This research aims to provide a better understanding of the structural behavior of masonry arch bridges using advanced modeling strategies. Two main contributions are achieved in this article; first, triggering mechanisms for the out of plane failure of spandrel walls are established; second, the influence of soil backfill on the behavior and strength of the bridges is presented through a comprehensive parametric study. Here, masonry arch bridges are modeled using a discontinuum approach, composed of discrete blocks, including also a continuum mesh to replicate infill material, adopting a framework of discrete element modeling. The equations of motion for each block are solved by an explicit finite-difference method, using the commercial software 3DEC. The results of the preliminary analyses are compared with analytical solutions and limit state analysis for validation purposes. Different arch bridge models, representing common geometrical properties in the northwest Iberian Peninsula are analyzed. Transverse effects, damage patterns and collapse mechanisms are discussed under different types of loading. The analysis demonstrated the severe capacity reduction due to spandrel wall failures and the importance of soil backfill in results, only possible by taking advantage of the performed numerical modeling strategy

    An industry experiment on the effects of test-driven development on external quality and productivity

    Get PDF
    Existing empirical studies on test-driven development (TDD) report different conclusions about its effects on quality and productivity. Very few of those studies are experiments conducted with software professionals in industry. We aim to analyse the effects of TDD on the external quality of the work done and the productivity of developers in an industrial setting. We conducted an experiment with 24 professionals from three different sites of a software organization. We chose a repeated-measures design, and asked subjects to implement TDD and incremental test last development (ITLD) in two simple tasks and a realistic application close to real-life complexity. To analyse our findings, we applied a repeated-measures general linear model procedure and a linear mixed effects procedure. We did not observe a statistical difference between the quality of the work done by subjects in both treatments. We observed that the subjects are more productive when they implement TDD on a simple task compared to ITLD, but the productivity drops significantly when applying TDD to a complex brownfield task. So, the task complexity significantly obscured the effect of TDD. Further evidence is necessary to conclude whether TDD is better or worse than ITLD in terms of external quality and productivity in an industrial setting. We found that experimental factors such as selection of tasks could dominate the findings in TDD studies.This research has been partly funded by Spanish Ministry of Science and Innovation projects TIN2011-23216, the Distinguished Professor Program of Tekes, and the Academy of Finland (Grant Decision No. 260871)

    Function after spinal treatment, exercise and rehabilitation (FASTER): improving the functional outcome of spinal surgery

    Get PDF
    Background: The life-time incidence of low back pain is high and diagnoses of spinal stenosis and disc prolapse are increasing. Consequently, there is a steady rise in surgical interventions for these conditions. Current evidence suggests that while the success of surgery is incomplete, it is superior to conservative interventions. A recent survey indicates that there are large differences in the type and intensity of rehabilitation, if any, provided after spinal surgery as well as in the restrictions and advice given to patients in the post-operative period. This trial will test the hypothesis that functional outcome following two common spinal operations can be improved by a programme of post-operative rehabilitation that combines professional support and advice with graded active exercise and/or an educational booklet based on evidence-based messages and advice.Methods/Design: The study design is a multi-centre, factorial, randomised controlled trial with patients stratified by surgeon and operative procedure. The trial will compare the effectiveness and cost-effectiveness of a rehabilitation programme and an education booklet for the postoperative management of patients undergoing discectomy or lateral nerve root decompression, each compared with "usual care" using a 2 x 2 factorial design. The trial will create 4 sub-groups; rehabilitation-only, booklet-only, rehabilitation-plus-booklet, and usual care only. The trial aims to recruit 344 patients, which equates to 86 patients in each of the four sub-groups. All patients will be assessed for functional ability (through the Oswestry Disability Index - a disease specific functional questionnaire), pain (using visual analogue scales), and satisfaction pre-operatively and then at 6 weeks, 3, 6 and 9 months and 1 year post-operatively. This will be complemented by a formal analysis of cost-effectiveness.Discussion: This trial will determine whether the outcome of spinal surgery can be enhanced by either a postoperative rehabilitation programme or an evidence-based advice booklet or a combination of the two and as such will contribute to our knowledge on how to manage spinal surgery patients in the post-operative period
    • …
    corecore