
0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3098670, IEEE Software

Ground truth deficiencies in
software engineering: when
codifying the past can be
counterproductive

Eray Tüzün
Bilkent University, Turkey

Hakan Erdogmus
Carnegie Mellon University, USA

Maria Teresa Baldassarre
University of Bari, Italy

Michael Felderer
University of Innsbruck, Austria, and Blekinge Institute of Technology, Sweden

Robert Feldt
Chalmers University of Technology and Blekinge Institute of Technology, Sweden

Burak Turhan
University of Oulu, Finland, and Monash University, Australia

Abstract—Many software engineering tools build and evaluate their models based on historical
data to support development and process decisions. These models help us answer numerous
interesting questions, but have their own caveats. In a real-life setting, the objective function of
human decision-makers for a given task might be influenced by a whole host of factors that stem
from their cognitive biases, subverting the ideal objective function required for an optimally
functioning system. Relying on this data as ground truth may give rise to systems that end up
automating software engineering decisions by mimicking past sub-optimal behaviour. We
illustrate this phenomenon and suggest mitigation strategies to raise awareness.

IN Weapons of Math Destruction: How
Big Data Increases Inequality and Threat-
ens Democracy , author Cathy O’Neill [1] is-
sues a stern warning about relying on historical
data to automate decision-making processes: “Big
Data processes codify the past. They do not
invent the future.” O’Neill is referring to the built-
in biases present in past data. The biases get
reinforced if that data is used to automate future

decisions, leading to an unvirtuous cycle with
potentially negative social-justice implications. In
his HBR article, Redman [2] confirms this effect:
“Poor data quality is enemy number one to the
widespread, profitable use of machine learning.
The quality demands of machine learning are
steep, and bad data can rear its ugly head twice
both in the historical data used to train the pre-
dictive model and in the new data used by that

IEEE Software Published by the IEEE Computer Society c© 2021 IEEE 1

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on March 23,2022 at 11:44:37 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3098670, IEEE Software

model to make future decisions.”
Data science and machine-learning expertise

in software development teams has been becom-
ing more pervasive and central [3]. Software or-
ganizations have been taking advantage of teams
with combined engineering and data science skills
to analyze, improve, and automated their orga-
nizations’ development processes and decisions
based on data collected internally or from exter-
nal and public sources, with applications rang-
ing from predicting defects [4] to assignment
of engineers to various development tasks [5].
Considering the increasing popularity of these
and other similar machine-learning applications
in software engineering, we make the parallel
case that blindly relying on historical data to
automate software engineering decisions can be
harmful.

The use of rich historical data undoubtedly
improved our ability to answer many questions
about software engineering practice in novel ways
and led to important advances. However, soft-
ware engineering is not uniquely immune to
problems that plague applications in other fields.
In software engineering, the harm may not be
one of deeply ingrained social injustice, but is
more likely to be one of perpetual sub-optimality.
While seemingly benign, such sub-optimality
may end up deteriorating rather than improving
decision making quality, and ultimately, compro-
mise the software practices that rely on these
decisions.

Like in the general case, the root cause of
sub-optimality in software engineering can often
be traced to various kinds of cognitive biases
[6]. Typically the historical data misrepresents
the dependent construct involved in a decision
problem—say choosing a qualified developer for
a specific technical task—by knowingly or un-
knowingly substituting a critically important at-
tribute (e.g., technical competence) by an attribute
much less relevant to the decision’s goal (e.g.,
positive social interactions). Typically, the sub-
stitution is not just random noise, but happens
systemically.

From a research perspective, the end result
is a possibly serious threat to construct validity.
However, research-related considerations, which
are well-known in empirical software engineering
[7], are not our focus. Instead we focus on practi-

cal implications by addressing consequences tied
to the resulting models’ use as black boxes in real
tools, and ultimately in real practice, without any
concerns about the data with which the models
were trained. The biases become reinforced when
we simply codify faulty past behavior in a tool
automating a decision problem. Arguably, there
may be short-term value in automating even bad
decisions because they save time, but long-term
harms may erase any short-term savings.

To avoid harming future practice, the de-
pendent construct in a decision-making problem
should at least approximate a defensibly good
answer. The objectively correct, or optimal, an-
swer is what ground truth normally means, but
it is sufficient for it to be good enough. If the
ground truth is systemically of poor quality, the
decisions will also be systemically poor, degrad-
ing future practice rather than supporting it. More
importantly, the resulting system’s poor perfor-
mance can never be revealed: when the ground
truth is distorted by severely by sub-optimal past
outcomes, the reference point to be used in any
validation task would by definition be wrong.

Although well-documented in the general ma-
chine learning literature [8], the practical im-
plications of ground truth deficiencies are not
widely recognized in software engineering. Men-
zies and Shepperd [9] list a number of “bad
smells” in software analytics applications, but
do not explicitly allude to ground truth issues.
Software’s special issue on 50 Years of Software
Engineering [10] discuss several challenges in the
same context without bringing up ground truth.
Our goal in this article is to close this gap and
raise awareness. To that end, we first discuss
cases drawn from familiar software engineering
applications. Building on these cases, we propose
a structured discovery and improvement process.

This article builds on expert insights gleaned
from a working session conducted on the topic at
the 2019 annual meeting of the International Soft-
ware Engineering Research Network. The session
is described in the Sidebar provided. Many of the
cases presented originated from that context.

Motivating Example
As a first example, consider the modern code

review process, where the goal is to select quali-
fied reviewers for a new pull request (PR). Many

2 IEEE Software

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on March 23,2022 at 11:44:37 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3098670, IEEE Software

code reviewer recommendation (CRR) systems
train their models on datasets gathered from real-
life projects, using actual past assignments to
represent the ground truth. We can think of the
code reviewer decision as a classification prob-
lem. Each data point corresponds to a PR with the
assigned code reviewer being the label assigned
by a human. The top row of Table 1 shows one
example that builds a Bayesian network from past
assignments. In CRR systems, the code reviewer
assigned to a past PR is assumed to be qualified to
perform the review. However, in many situations,
the assigned code reviewer may not necessarily
be a good choice, or the good choices may not
even be represented in the dataset. In reality, the
objective function of a human decision-maker for
recommending a reviewer might be implicit (e.g.,
based on convenience and subject to availability,
recency, recall, default, and wishful-thinking bi-
ases [6]), and fail to align with the ideal objective
function required for an optimally performing
system (e.g., based on the reviewer’s technical
competence and familiarity with the piece of code
involved in the PR). Thus the ground truth may
be distorted by cognitive biases affecting the hu-
man decision-makers who make the assignments.
When this happens, the resulting systems will at
best mimic poorly-made past decisions.

When Ground Truth is Objective
To give a counter-example in which there is

no apparent ground truth distortion of the kind
discussed above, consider the work by Owhadi-
Kareshk et al. [11]. In this work, the authors
attempt to predict merge conflicts where a file in a
codebase is modified simultaneously by multiple
developers. The purpose of the prediction is to
increase the efficiency of the code integration
process by alerting the involved developers of
impending conflicts in a timely way. This would
aid in speculative merging by eliminating expen-
sive real-time checks: file change combinations
that are unlikely to lead to merge conflicts would
not need these checks. The ground truth is repre-
sented by the actual merge conflicts in the histor-
ical data, which can be objectively determined.
Unlike the CRR scenario above where labelers
were humans subject to biases, an algorithm per-
formed the labeling in the merge conflict dataset
with 100% accuracy.

APPLICATIONS WITH POTENTIAL
GROUND TRUTH DEFICIENCIES

Table 1 illustrates the pervasiveness of ground
truth problems through additional representative
cases. The cases constitute a convenience sample
(see the Sidebar). Each case presents a well-
motivated application and uses the proper meth-
ods, but suffers from potential ground truth issues
worthy of explicating and checking. Some of
these issues have been acknowledged and ad-
dressed by the original authors to varying extents,
while others remain outstanding. We use the
cases’ contexts as illustrative examples to raise
awareness, and propose concrete strategies.

Next let’s focus another familiar application,
Defect Prediction (DP). In the example case [12],
the authors use cross-project data from multi-
ple sources to predict modules that are likely
to contain defects. This job is important for
directing limited quality assurance resources to
parts of the code that provide the best return on
the quality assurance effort. The authors build a
Bayesian classifier based on historical data, where
the ground truth is represented by attributions
of defects to code artifacts. The attribution, or
labeling, was done by humans for part of the
dataset, and automatically using a heuristic in
the remainder. This case is illustrative because it
highlights problems associated with both manual
and automated labeling. For the models built to
be useful in practice, the defect attributions must
be reasonably accurate. Manual defect attribution
is notorious for being inaccurate, haphazard, and
subject to political, convenience and self-interest
biases. Automated defect attribution presents a
different kind of problem, where we use one pre-
dictive heuristic whose accuracy may be uncertain
to capture the ground truth for another predictive
heuristic.

Table 1 includes other common cases in-
volving prediction tasks that may exhibit sim-
ilar, potentially harmful ground truth problems
in the historical data: Rework Estimation (RE)
and Reopened Bug Prediction (RBP). In these
applications, cognitive biases such as recall, de-
fault, availability, conflict of interest, self-interest
effects [6] could easily be present in, or even
dominate, the ground truth. In the RBP case, the
set of reopened bug reports in the historical data
is likely to be a subset of the truly recurring

2021 3

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on March 23,2022 at 11:44:37 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3098670, IEEE Software

Sidebar: Investigating the Validity of Ground Truth in Software Engineering at
ISERN 2019

This article culminated from the session on Investigating the Validity of Ground Truth in
Software Engineering that was held during ISERN 2019, the annual meeting of the International
Software Engineering Research Network, on September 17 at Porto de Galinhas, Brazil. 42 expert
participants discussed the implications of ground truth problems in software practice, motivated
by the expectation that such problems would become increasingly more pervasive with the easy
availability of rich historical data, the proliferation of machine learning techniques that leverage
such data, and the gradual penetration of resulting black-box models into automated tools that
support software development decisions in the field.

During the working session, 10 breakout groups, based on their collective knowledge and
experience, were asked to produce structured cases with a potential to negatively impact decision
making in software engineering. The results were presented, tabulated, and organized in a format
similar to that of Table 1. The examples discussed in this article, including the cases presented in
the table, are sourced from the working session results, which were validated with the participants
offline following the session by soliciting feedback on the observations and examples recorded.
We thank all participants for their contributions.

More information on the ISERN 2019 meeting can be found at:

http://eseiw2019.com/isern/

bugs. The under-representation of bugs may be
due to several root cause biases: not remembering
all previous bugs (primacy and recency effects),
turnover causing loss of project memory, not
being aware of previous bugs, laziness (it is easier
to create a new report than identifying the original
bug report), politics (reopened bugs may make
a developer look bad), and misguided incentives
(bug reporters might get more credit for new
bugs). These biases, if present, will increase
false negatives in real practice, missing bugs that
may be reopened, and preventing early remedial
action. In the RE case, biases and inaccuracies
in the recorded rework effort data may lead to
misguided resource allocation, prioritization, and
commitment decisions for development teams,
wasting precious resources and causing reputa-
tional damage.

In the Sentiment Analysis (SA) case, ground
truth problems result from inaccuracies by hu-
man labelers when attributing emotions to pieces
of text. Various cognitive biases—in particular,
miserly information, impact, representativeness,
selective perception, recency, recall, time-based,

confirmation, fixation and invincibility [6]—may
contribute to these inaccuracies. Consequently,
software technology recommendations from tools
and systems that build on models using the sen-
timent data can become mistrustful, and lead to
choices that do not meet users’ goals.

In the Bug Assignment (BA) case, the ground
truth is represented by three different sources
of historical data: (1) past bug descriptions (2)
inferred bug-developer relationships for making
recommendations, and (3) actual bug-developer
assignments for validating these recommenda-
tions. Although poor bug descriptions will lead
to poor recommendations, this example highlights
a different issue: performance-masking problems
caused by the validation data. Here the validation
data assumes past bug assignments were optimal
and unbiased, whereas in reality the data may
have been tainted by a spectrum of cognitive
biases as before, including default, availability,
anchoring, adjustment, miserly information, re-
call, validity, representativeness, fixation, confir-
mation, conflict of interest, and invincibility [6].
As a result, the validation data may underestimate

4 IEEE Software

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on March 23,2022 at 11:44:37 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3098670, IEEE Software

the goodness of the approach because the data
used to build the recommendation heuristic may
in fact be more reliable than the data used to
validate it. The heuristic may in practice perform
much better than the validation results suggest,
yet be dismissed based on poor performance
results.

These cases demonstrate how hidden biases
that creep into the ground truth data may defeat
the purpose of the applications that depend on
them.

A GROUND TRUTH IMPROVEMENT
PROCESS

Ground truth implies veracity, i.e., what we
use as ground truth in building new models is
what is assumed to be true. But, the veracity of
ground truth cannot simply be viewed as black
or white. In practice, what is used as the actual
outcomes or labels can be more or less true
to the concept we actually want to measure.
Since we clearly want high veracity, how can
we be aware of ground truth problems and what
practical guidelines can help us make our ground
truth more veritable?

Based on the case examples above, we first
worked bottom-up to group potential ground truth
problems . This allowed a few main clusters to
emerge. It was clear that the groups had a natural
order, based either on (a) the distance from the
actual person that should have, ideally, been the
source of the ground truth, or on (b) the distance
from the situation and time in which that person
would have been the most equipped to act as that
source. For each major group, we then identified
the main types of biases and looked for general
mitigation strategies to address them.

Figure 1 shows the results of this iterative
aggregation work. The five blue boxes contain
prioritized questions that guide the users of his-
torical data toward improving the veracity of
their datasets’ ground truth. The parallelograms
contain high-level summaries of what to do and
consider in each step. The top-level question
is whether the ground truth involves a human
decision-maker. However even in cases when a
human decision-maker is not involved, it is still
important to consider if the labeling is objective
and accurate and to demonstrate this.

The main, rightward flow passes through the

three essential bias groups we found in our case
examples. If the labels were provided by a third
party, there could be a multitude of biases due
to differences between the third parties and the
actual developers and engineers involved. Main
biases to consider are related to incomplete and
imperfect information of the third parties as well
as differences in perception, cognition, views, and
emotions.

The next important question to consider is
the time between when the ground truth should
ideally have been collected and when it was
actually recorded. Whenever ground truth is not
recorded in real-time, i.e., when the activity the
ground truth data is actually about takes place
before the time it was re-enacted and recorded,
there is a risk that the data will differ from what
it should have been.

Finally, even if the source of the ground truth
is not a third party and there isn’t a significant
time difference, any human involved in labeling
will still be susceptible to biases. Some of the bi-
ases are typically conscious, what we have called
agenda-based in Figure 1. However, others may
be sub-conscious , i.e., based on convenience or
individual views and expectations. Even though
human factors can affect all of the three steps,
conscious factors are directly in focus in the
last step, where more subtle behaviors should be
carefully considered.

The process shown in Figure 1 has a natural
progression from right to left. Once biases related
to the distance between the third-party and the
direct involvers have been considered and im-
proved upon, we can consider biases related to
time differences. And when these have been ac-
counted for, the process guides us to also consider
other biases originating from subjectivity and
self interest. And if at some point, we consider
our labeling process so formalized and objective
that no further human biases can be considered,
the process encourages us to also consider any
potential issues in the labeling process itself. We
argue that this is a natural order in which to
examine the veracity of the ground truth data: the
more to the right of the process flow we are, the
more susceptible we are to underlying biases and
the more kinds of biases there are to which we
are susceptible.

2021 5

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on March 23,2022 at 11:44:37 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3098670, IEEE Software

Figure 1: A Process for Improving Ground Truth.

Improvement Strategies

The process in Figure 1 can be used to ex-
amine the quality of the ground truth data in a
systematic way. Given the contextual richness of
software engineering applications, it is impossible
to cover every plausible scenario. A one-size-fits-
all solution does not exist. But we can still focus
on general alleviation strategies that fit common
recurring contexts. In Figure 1 lists some com-
mon strategies in the dashed-boxes. This is only
our initial attempt; future work should consider
more refined guidelines for improving ground
truth veracity in software engineering in different

application contexts.

To illustrate the strategies more concretely,
consider a situation in which the ground truth
labels are determined by a third-party. Assume we
have limited access to the people and processes
involved in determining the ground truth, which
makes it susceptible to a wide range of biases
related to perceptions, convenience, self-interest,
and imperfect information. This situation corre-
sponds to the rightmost parallelogram in Figure 1.
The ideal remedial strategy to consider in this
case would be to re-label all data by systematic
and transparent techniques involving objective

6 IEEE Software

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on March 23,2022 at 11:44:37 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3098670, IEEE Software

parties and experts. While this strategy can be
impractically expensive after the fact, it has been
implemented for applications requiring defect
identification and attribution (BA, DP, RBP cases
in Table 1). An example is SmartSHARK [13],
a human-in-the-loop, crowd-sourcing approach
for labeling defect-related ground truth data.
SmartSHARK uses multiple experts with rigorous
contribution and agreement protocols. Notably,
the agreement protocols can force the labelers
to leverage contextual information. The use of
contextual information can also help in other
situations with high-levels of subjectivity, for
example, in sentiment identification (the SA case
in Table 1).

Next, consider a situation where the data is
collected directly, but not in real time, corre-
sponding to the middle parallelogram in Figure 1.
The ideal strategy would be to switch to real-
time collection of new data. However, this may be
infeasible in many cases. For example, processing
open-source project data is almost impossible
with real-time, human-in-the-loop labeling. The
good news is that the two strategies mentioned
in the first situation—after-the-fact validation by
multiple, independent experts and the use of
additional, contextual information to triangulate
and correct the ground truth data—apply here as
well. Examples of these strategies can be found in
[14], where architectural ground truth recovered
from various artifacts (code and documents) and
in multiple ways were certified by a software
architect with first-hand knowledge about these
artifacts.

Suppose we have solved third-party labeling
and time separation issues, and we find ourselves
in a situation in which directly-involved humans
have captured the ground truth in near real-time.
This corresponds to the parallelogram on the
bottom left corner of Figure 1. Using multiple
experts in real-time is often impractical, and we
would have to rely on a single labeler who may
be susceptible to biases. Thus, instead we could
resort to automated labeling heuristics and trian-
gulating/validating with additional data sources.
The labeling heuristic can rely on secondary in-
formation collected through instrumentation. For
example, in the RE application of Table 1, bug
fix effort can be inferred from or validated by
fine-grained telemetry data on relevant developer

actions as well as additional sources containing
information on idle times, meetings, and work-
loads.

Another application where triangulation and
secondary information can be useful is sentiment
analysis. In the SA case of Table 1, declared first-
person sentiments can be validated through bio-
metric measurements from wearable tech (sec-
ondary information). In addition, if text analysis
is used to infer sentiments, experts can revisit the
labels to correct possible misclassifications.

In the CRR case of Table 1, such after-the-fact
correction may be possible by tracing long-term
effects of a reviewer assignment to a PR—e.g.,
by linking future bugs to past PRs via the bug
tracking system—and removing/correcting review
assignments for these potentially unsuccessful
PRs in the historical data. A similar approach may
also be implemented in the BA case: a success
measure can be defined using available contextual
information to more objectively evaluate whether
a bug fix assignment was successful, e.g., by
ensuring that the bug that was subject to an
assignment was in fact never reopened again.

The above cases are not collectively exhaus-
tive: some applications may require custom strate-
gies. For example, we may need a buffer period
in data collection to allow for latent effects to
be recorded when such effects exist. A buffer
period may be warranted in the DP application
to include latent bugs from recent releases in the
ground truth data.

When ground truth labels are highly sub-
jective, training the labelers may make sense.
However this approach is not without caveats:
while training may provide short-term benefits,
it may be too expensive without clear long-term
returns [6].

If the original labelers are accessible, another
human-in-the loop validation strategy is to revisit
the data with them to identify sub-optimal labels
and reveal biases. Asking directed questions on
how the decisions and estimates were reached
and challenging them in a retrospective session
might provide cues on how reliable the data is,
raise awareness, and help improve the reliability
of future data originating from the same labelers.

Validating and correcting ground truth data
after the fact is important, but even with best
efforts, it may still not be enough. Ultimately, we

2021 7

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on March 23,2022 at 11:44:37 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3098670, IEEE Software

may need to collect new data with better labeling
processes.

CONCLUSION
Relying blindly on historical data as ground

truth may give rise to automated solutions that
end up mimicking past sub-optimal behaviour.
Reconstructing ground truth post facto is espe-
cially susceptible to several biases. We compiled
a list of typical cases that illustrate the perva-
siveness of ground truth problems in software
engineering and provided a prioritization and
remediation process. The central features of this
process are:

• If ground truth data involves a human decision-
maker, the priority should be to collect the
relevant data directly, that is in real-time and
without relying on a third-party.

• When the above is not feasible, revisit the
assumptions made about the ground truth data,
and identify possible violations. The majority
of the assumption violations would stem from
cognitive biases, which may need to be ad-
dressed. Table 1 gives typical examples.

• Once the assumption violations are exposed,
use the process given in Figure 1 as a guide
to improve ground truth quality. If possible,
validate and correct the data using secondary
sources. If not, consider collecting new data
using better strategies. If none of this is fea-
sible, focus efforts on improving future data
collection.

In recent work, we have applied the ground
truth improvement process and some of the im-
provement strategies to our motivating example,
the CRR problem [15]. In that work, the labeling
was done in real-time by parties directly involved
with reviewer assignments, traversing the blue
rectangles in Figure 1 from the rightmost to the
leftmost (”Labeling by third party? Yes”, ”Real-
time labeling? Yes”, and ”Labeler susceptible to
biases? Yes”). After recognizing that the original
labelers could have been prone to convenience
biases, we looked for more objective, longer-
term success factors in the data that confirm
or refute the labeling decisions, and devised a
heuristic to flag and remove the samples that
violated the identified success factor (thus fol-
lowing the strategies mentioned in the bottom

leftmost dashed box). Cleaning up the ground
truth data by removing suspect samples improved
the performance of the evaluated CRR techniques.
This application however is just one case, and we
need many more cases that traverse Figure 1 in
different ways, activating different improvement
strategies, to validate the advice.

Ground truth consists of shades of gray. Even
if we apply the above steps, we cannot entirely
eliminate all problems. The goal is to make sure
that the resulting systems are not perpetually
bound to problematic data, but has a chance to
improve over time with new and better data, as
well as better data collection processes.

In situations where biases and sub-optimal be-
havior are pervasive and impossible to detect, past
data can only end up capturing seriously flawed
practice. Classical optimization approaches may
be preferable to a data-centered approach in these
situations.

Eray Tüzün and Hakan Erdogmus contributed equally to

this work as first authors. The remaining authors are listed

in alphabetical order.

8 IEEE Software

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on March 23,2022 at 11:44:37 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3098670, IEEE Software

Table 1: Potential ground truth problems in example applications.
Application /
Example

Approach Ground Truth Possible Assumption
Violations

Code Reviewer
Recommendation (CRR)

Recommend the best
code-reviewers for a new
PR

Jeong et al. (2009) [16]

Use: previous PR reviewer
assignment history, previous
commit info (file location,
name of folders, commit
author)

To: build a Bayesian network
using historical data and
selected features to predict
future reviewers

Captured by: code reviewers
who performed an actual
review for closed/merged PRs

Subject to assumptions:
• A good reviewer performs
the PR efficiently and
thoroughly
• Actual past reviewers
(whether self-selected or
assigned) are always ”best
reviewers” for a PR
• A merged/closed PR must
have had an effective review

• Reviewer assignments may
have been dictated by
convenience factors
(willingness, workload, social
relationships) rather than
technical factors (competence,
experience, familiarity with
code)
• A merged/closed PR may
cause future bugs and new
PRs to fix them

Reopened Bug Prediction
(RBP)

Predict which bugs will
be reopened in an issue
repository

Shibab et al. 2013 [17]

Use: available bug attributes
(bug closing time, priority,
severity, reporter/fixer of the
bug, description, comments
etc.) from issue repository

To: build decision-tree-based
predictive models using work
habits, bug reports, and bug
fixer’s characteristics

Captured by: bug reports that
were reopened according to
historical data

Subject to assumptions:
• When a bug resurfaces, a
human decision maker
correctly identifies the
original bug report and
reopens it instead of opening
a new bug report

• Bug identifications may
have been wrong due to
recollection problems,
turnover causing loss of
project memory, convenience
factors (easier to create a new
report than identifying the
original bug report), optics
(reopened bugs may make a
developer look bad), and
twisted incentives (bug
reporters might get more
credit for new bugs)

Sentiment Analysis (SA)

Gauge developers’
reactions to and
contentment with software
development technologies

Lin et al. (2018) [18]

Use: StackOverflow.com
comments about software tools
and libraries, or generally in
sentiment analysis, various
sources such as code
comments, discussion boards,
PR conversations, Q&A sites,
and commit messages

To: analyze short strings and
predict actual
emotion/sentiment based on
machine learning models and
similarity to known examples
(analogy-based methods)

Captured by: post-hoc judged
emotion/sentiment developer
had when writing the text

Subject to assumptions:
• A human or the same
developer is able to predict
the emotion they had when
writing the text
• There is a single/dominant
emotion/sentiment at a single
point in time when the text
was written
• People write text that reflect
their emotions/sentiment
• People care about being
truthful when writing
comments online

• Emotions often cannot be
judged post hoc even by the
same person writing the text
• Existing models of emotion
acknowledge they are
complex and interlocking
• Social filters may prevent
actual emotions from being
accurately expressed in
writing

Defect Prediction (DP)

Predict defect-prone
modules in a codebase

Turhan et al. (2013) [12]

Use: project data from
multiple/mixed projects across
different organizations and
sources, including code-level
metrics as features and
modules found to be defective

To: build naive Bayes
classifiers to predict
defect-prone modules based on
code-level features from mixed
projects

Captured by: defects
attributed to modules, both
manually and automatically
using an existing heuristic

Subject to assumptions:
• For manual attribution:
When a defect is reported for
a module, the module is
defective and vice versa
• For automated attribution:
heuristic used is 100%
accurate

• Manual defect
reporting/labeling procedures
were unclear and possibly
relied on recollection and
accuracy of humans and
influenced by political and
personal interests.
• Automatic defect attribution
heuristic may be far less than
100% accurate (an example
of an existing prediction
method used as ground truth
for another predictor)

Continued on next page

2021 9

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on March 23,2022 at 11:44:37 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3098670, IEEE Software

Table 1 – continued from previous page
Application /
Example

Approach Ground Truth Possible Assumption
Violations

Rework Estimation (RE)

Predict the time it will
take to fix a bug

Weiss et al. (2017) [19]

Use: issue reports (description,
severity, associated artifacts,
etc.), issue creation and
resolution/closure times

To: analyze text similarity
between new and fixed issues,
then averaging over past bug
fix times for similar issues

Captured by: time to fix a
bug as determined from issue
reporting system

Subject to assumptions:
• Time to fix a bug can
accurately be computed from
timestamp information in
issue reporting system

• Difference between bug
close and open times can be
affected by a variety of
factors unrelated to the effort
required, such as non-uniform
workloads, interruptions,
parallel work, and availability.
• An issue may have been
fixed without having being
explicitly closed

Bug Assignment (BA)

Assign a new bug to a
developer for fixing

Hu et al. (2014) [20]

Use: bug reports to be able to
match a new bug to an existing
similar bug and associate bugs
with components;
version-control data to be able
to associate components with
developers; real bug-developer
assignments for validation

To: build weighted graph
linking bugs to components
and components to developers,
and infer from these
relationships, a relationship
linking bugs to developers that
allows a new bug to be
assigned to a developer who
has fixed a similar bug

Captured by: bug-component
and component-developer
relationships; bug-developer
assignments or identity of
bug-fix committers

Subject to assumptions:
• For validation: past
bug-developer assignments
represent the best possible
choices: the assigned
developers are the best
choices in each case;
developer who committed the
bug fix actually fixed the bug

• A bug may not be
adequately described by
developer-provided
information
• A bug may be fixed by one
developer and committed by
another, changing the
assignment
• Bug assignments may have
been made in a sub-optimal
way

10 IEEE Software

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on March 23,2022 at 11:44:37 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3098670, IEEE Software

REFERENCES

1. C. O’Neil, Weapons of Math Destruction: How Big Data

Increases Inequality and Threatens Democracy. New

York, NY, USA: Crown Publishing Group, 2016.

2. T. C. Redman, “If your data is bad, your machine

learning tools are useless,” April 2, 2018. Harvard

Business Review, https://hbr.org/2018/04/if-your-data-

is-bad-your- machine-learning-tools-are-useless. Ac-

cessed March 1, 2021.

3. M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “The

emerging role of data scientists on software develop-

ment teams,” in Proceedings of the 38th International

Conference on Software Engineering, ICSE ’16, (New

York, NY, USA), p. 96–107, Association for Computing

Machinery, 2016.

4. D. Bowes, S. Counsell, T. Hall, J. Petric, and T. Shippey,

“Getting defect prediction into industrial practice: the

elff tool,” in 2017 IEEE International Symposium on

Software Reliability Engineering Workshops (ISSREW),

pp. 44–47, 2017.

5. L. Jonsson, M. Borg, D. Broman, K. Sandahl,

S. Eldh, and P. Runeson, “Automated bug assignment:

Ensemble-based machine learning in large scale indus-

trial contexts,” Empirical Software Engineering., vol. 21,

p. 1533–1578, Aug. 2016.

6. R. Mohanani, I. Salman, B. Turhan, P. Rodrı́guez, and

P. Ralph, “Cognitive biases in software engineering:

A systematic mapping study,” IEEE Transactions on

Software Engineering, October 2018.

7. R. Feldt and A. Magazinius, “Validity threats in empirical

software engineering research-an initial survey,” in 22nd

International Conference on Software Engineering and

Knowledge Engineering (SEKE), SEKE, 2012.

8. H. Jiang and O. Nachum, “Identifying and Correct-

ing Label Bias in Machine Learning,” in Proceed-

ings of Machine Learning Research, vol. 108, 2020.

http://arxiv.org/abs/1901.04966.

9. T. Menzies and M. Shepperd, “”bad smells” in soft-

ware analytics papers,” Information Software Technol-

ogy, vol. 112, pp. 35–47, Aug. 2019.

10. T. Menzies and T. Zimmermann, “Software analytics:

What’s next?,” IEEE Software, vol. 35, pp. 64–70, sep

2018.

11. M. Owhadi-Kareshk, S. Nadi, and J. Rubin, “Predict-

ing Merge Conflicts in Collaborative Software Devel-

opment,” in 2019 ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement

(ESEM), pp. 1–11, Sept. 2019. ISSN: 1949-3789, 1949-

3770.

12. B. Turhan, A. T. Mısırlı, and A. Bener, “Empirical evalu-

ation of the effects of mixed project data on learning de-

fect predictors,” Information and Software Technology,

vol. 55, pp. 1101–1118, 6 2013.

13. F. Trautsch, S. Herbold, P. Makedonski, and

J. Grabowski, “Addressing problems with replicability

and validity of repository mining studies through a

smart data platform,” Empirical Software Engineering,

vol. 23, no. 2, pp. 1036–1083, 2018.

14. J. Garcia, I. Krka, C. Mattmann, and N. Medvidovic,

“Obtaining ground-truth software architectures,” in 2013

35th International Conference on Software Engineering

(ICSE), pp. 901–910, 2013.

15. K. A. Tecimer, E. Tüzün, H. Dibeklioglu, and H. Erdog-

mus, “Detection and elimination of systematic labeling

bias in code reviewer recommendation systems,” in

Evaluation and Assessment in Software Engineering,

EASE 2021, (New York, NY, USA), p. 181–190, Asso-

ciation for Computing Machinery, 2021.

16. G. Jeong, S. Kim, T. Zimmermann, and K. Yi, “Improving

code review by predicting reviewers and acceptance of

patches,” Tech. Rep. ROSAEC MEMO 2009-006, Re-

search on Software Analysis for Error-Free Computing

Center, Seoul National University, September 2009.

17. E. Shihab, A. Ihara, Y. Kamei, W. M. Ibrahim, M. Ohira,

B. Adams, A. E. Hassan, and K. Matsumoto, “Studying

re-opened bugs in open source software,” Empirical

Software Engineering, vol. 18, no. 5, pp. 1005–1042,

2013.

18. B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza,

and R. Oliveto, “Sentiment analysis for software en-

gineering: How far can we go?,” in 40th International

Conference on Software Engineering, ICSE ’18, (New

York, NY, USA), p. 94–104, Association for Computing

Machinery, 2018.

19. C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller,

“How long will it take to fix this bug?,” in Fourth In-

ternational Workshop on Mining Software Repositories

(MSR’07:ICSE Workshops 2007), 2007.

20. H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effective

bug triage based on historical bug-fix information.,” in

Proceedings of the 15th IEEE International Symposium

of Software Reliability Engineering (ISSRE), pp. 122–

132, IEEE Computer Society, 2014.

2021 11

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on March 23,2022 at 11:44:37 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3098670, IEEE Software

Eray Tuzun is an Assistant Profes-
sor leading the Software Engineer-
ing and Data Analytics Research
Group in the Department of Com-
puter Engineering at Bilkent Uni-
versity. He received his PhD from
Middle Eastern Technical Univer-
sity, Turkey. Prior to joining Bilkent

University, he worked in the software industry for over
15 years. His research interests include software ana-
lytics, empirical software engineering, software reuse,
gamification, and software engineering education. He
is a senior member of IEEE. Contact him at eray-
tuzun@cs.bilkent.edu.tr.

Hakan Erdogmus is a Teaching
Professor at Carnegie Mellon Uni-
versity’s Department of Electrical
and Computer Engineering. He re-
ceived his PhD from the Univer-
sity of Québec, Montréal. His re-
search interests are centered on em-
pirical software engineering, soft-

ware quality, software economics, and software engineer-
ing education. He is a former Editor in Chief of IEEE
Software, an Associate Editor of Empirical Software En-
gineering, a Gold Core member of IEEE Computer So-
ciety, and a Senior Member of IEEE. Contact him at
hakan.erdogmus@sv.cmu.edu.

Maria Teresa Baldassare is As-
sociate Professor, PhD, at the De-
partment of Informatics of the Uni-
versity of Bari, Italy. Her research
interests are mainly focused on: em-
pirical software engineering, human
factors in software engineering,
software measurement and quality

assurance. She is involved in several research projects
and carries out controlled and in field experimentation
within small and medium enterprises, and international
academic partners. Currently she is the representative
of the University of Bari in the International Software
Engineering Research Network (ISERN). She is Asso-
ciate Editor of Decision Support Systems Journal. She
has covered several roles in the organization of software
engineering related conferences. Contact her at: mari-
ateresa.baldassarre@uniba.it.

Michael Felderer is an Associate
Professor at the Department of
Computer Science at the University
of Innsbruck, Austria and a Guest
Professor at the Department of Soft-
ware Engineering at the Blekinge
Institute of Technology, Sweden.
His research interest include soft-

ware quality and testing, AI and software engineering,
requirements engineering and empirical software engineer-
ing. He holds a habilitation degree from the University
of Innsbruck. He is an Editorial Board Member of In-
formation and Software Technology, IET Software, and
International Journal on Software Tools for Technology
Transfer. Furthermore, he as more than 10 years of indus-
trial experience in software engineering. Contact him at
michael.felderer@uibk.ac.at.

Robert Feldt is a professor of Soft-
ware Engineering at Chalmers Uni-
versity of Technology, Sweden, and
at Blekinge Institute of Technology,
Sweden. He has broad research in-
terests spanning from human fac-
tors to automation and statistics,
and works on software testing and

quality, requirements engineering, as well as human-
centred (behavioural) software engineering. Most of his
research is empirical and conducted in close collaboration
with industry partners in Sweden, Europe and Asia, but he
also leads more basic research. Dr Feldt received a PhD
in Computer Engineering from the Chalmers University of
Technology in 2002, has studied Psychology at Gothenburg
University in the ’90s and has also worked as an IT and
software consultant for more than 25 years. He is co-Editor
in Chief of the Empirical Software Engineering journal and
on the editorial board of two other journals (STVR and
SQJ).

12 IEEE Software

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on March 23,2022 at 11:44:37 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2021.3098670, IEEE Software

Burak Turhan, PhD (Bog̃aziçi
University), is a Professor of Soft-
ware Engineering at the University
of Oulu and an Adjunct Professor
(Research) in the Faculty of Infor-
mation Technology at Monash Uni-
versity. His research focuses on em-
pirical software engineering, soft-

ware analytics, quality assurance and testing, human fac-
tors, and (agile) development processes. He is a Senior
Associate Editor of Journal of Systems and Software,
an Associate Editor of ACM Transactions on Software
Engineering and Methodology and Automated Software
Engineering, an Editorial Board Member of Empirical
Software Engineering, Information and Software Tech-
nology, and Software Quality Journal, a Review Board
member of IEEE Transactions on Software Engineering,
a Senior Member of ACM and IEEE, and a member of
ACM SIGSOFT and IEEE Computer Society. For more
information please visit: https://turhanb.net or contact him
at turhanb@computer.org.

2021 13

Authorized licensed use limited to: Università degli Studi di Bari. Downloaded on March 23,2022 at 11:44:37 UTC from IEEE Xplore. Restrictions apply.

https://turhanb.net

