9,045 research outputs found
Experiences from Software Engineering of Large Scale AMR Multiphysics Code Frameworks
Among the present generation of multiphysics HPC simulation codes there are
many that are built upon general infrastructural frameworks. This is especially
true of the codes that make use of structured adaptive mesh refinement (SAMR)
because of unique demands placed on the housekeeping aspects of the code. They
have varying degrees of abstractions between the infrastructure such as mesh
management and IO and the numerics of the physics solvers. In this experience
report we summarize the experiences and lessons learned from two of such major
software efforts, FLASH and Chombo.Comment: Experience Repor
FogGIS: Fog Computing for Geospatial Big Data Analytics
Cloud Geographic Information Systems (GIS) has emerged as a tool for
analysis, processing and transmission of geospatial data. The Fog computing is
a paradigm where Fog devices help to increase throughput and reduce latency at
the edge of the client. This paper developed a Fog-based framework named Fog
GIS for mining analytics from geospatial data. We built a prototype using Intel
Edison, an embedded microprocessor. We validated the FogGIS by doing
preliminary analysis. including compression, and overlay analysis. Results
showed that Fog computing hold a great promise for analysis of geospatial data.
We used several open source compression techniques for reducing the
transmission to the cloud.Comment: 6 pages, 4 figures, 1 table, 3rd IEEE Uttar Pradesh Section
International Conference on Electrical, Computer and Electronics (09-11
December, 2016) Indian Institute of Technology (Banaras Hindu University)
Varanasi, Indi
Sustainability of crop production from polluted lands
Sustainable food production for a rapidly growing global population is a major challenge of this century. In order to meet the demand for food production, an additional land area of 2.7 to 4.9 Mha year -1 will be required for agriculture. However, one third of arable lands are already contaminated, therefore the use of polluted lands will have to feature highly in modern agriculture. The use of such lands comes however with additional challenges and suitable agrotechnological interventions are essential for ensuring the safety and sustainability of relevant production system. There are also other issues to consider such as, cost benefit analysis, the possible entry of pollutants into to the phytoproducts, certification and marketing of such products, in order to achieve a the large scale exploitation of polluted land
Extensible Component Based Architecture for FLASH, A Massively Parallel, Multiphysics Simulation Code
FLASH is a publicly available high performance application code which has
evolved into a modular, extensible software system from a collection of
unconnected legacy codes. FLASH has been successful because its capabilities
have been driven by the needs of scientific applications, without compromising
maintainability, performance, and usability. In its newest incarnation, FLASH3
consists of inter-operable modules that can be combined to generate different
applications. The FLASH architecture allows arbitrarily many alternative
implementations of its components to co-exist and interchange with each other,
resulting in greater flexibility. Further, a simple and elegant mechanism
exists for customization of code functionality without the need to modify the
core implementation of the source. A built-in unit test framework providing
verifiability, combined with a rigorous software maintenance process, allow the
code to operate simultaneously in the dual mode of production and development.
In this paper we describe the FLASH3 architecture, with emphasis on solutions
to the more challenging conflicts arising from solver complexity, portable
performance requirements, and legacy codes. We also include results from user
surveys conducted in 2005 and 2007, which highlight the success of the code.Comment: 33 pages, 7 figures; revised paper submitted to Parallel Computin
Quantification of the pressures generated during insertion of an epidural needle in labouring women of varying body mass indices
Objective: The primary aim of this study was to measure pressure generated on a Tuohy needle during the epidural procedure in labouring women of varying body mass indices (BMI) with a view of utilising the data for the future development of a high fi delity epidural simulator. High-fi delity epidural simulators have a role in improving training and safety but current simulators lack a realistic experience and can be improved. Methods: This study was approved by the National Research Ethics Service Committee South Central, Portsmouth (REC reference 11/SC/0196). After informed consent epidural needle insertion pressure was measured using a Portex 16-gauge Tuohy needle, loss-of-resistance syringe, a three-way tap, pressure transducer and a custom-designed wireless transmitter. This was performed in four groups of labouring women, stratifi ed according to BMI kg/m2: 18-24.9; 25-34.9; 35-44.9 and >=45. One-way ANOVA was used to compare difference in needle insertion pressure between the BMI groups. A paired t-test was performed between BMI group 18-24.9 and the three other BMI groups. Ultrasound images of the lumbar spine were undertaken prior to the epidural procedure and lumbar magnetic resonance imaging (MRI) was performed within 72h post-delivery. These images will be used in the development of a high fi delity epidural simulator. Results: The mean epidural needle insertion pressure of labouring women with BMI 18-24.9 was 461mmHg; BMI 25-34.9 was 430mmHg; BMI 35-44.9 was 415mmHg and BMI >=45 was 376mmHg, (p=0.52). Conclusion: Although statistically insignifi cant, the study did show a decreasing trend of epidural insertion pressure with increasing body mass indices
Robotic control of the seven-degree-of-freedom NASA laboratory telerobotic manipulator
A computationally efficient robotic control scheme for the NASA Laboratory Telerobotic Manipulator (LTM) is presented. This scheme utilizes the redundancy of the seven-degree-of-freedom LTM to avoid joint limits and singularities. An analysis to determine singular configurations is presented. Performance criteria are determined based on the joint limits and singularity analysis. The control scheme is developed in the framework of resolved rate control using the gradient projection method, and it does not require the generalized inverse of the Jacobian. An efficient formulation for determining the joint velocities of the LTM is obtained. This control scheme is well suited for real-time implementation, which is essential if the end-effector trajectory is continuously modified based on sensory feedback. Implementation of this scheme on a Motorola 68020 VME bus-based controller of the LTM is in progress. Simulation results demonstrating the redundancy utilization in the robotic mode are presented
- …
