213 research outputs found
Modeling Conformational and Molecular Weight Heterogeneity with Analytical Ultracentrifugation Experiments
a review
It is well documented that global warming is unequivocal. Dairy production
systems are considered as important sources of greenhouse gas emissions;
however, little is known about the sensitivity and vulnerability of these
production systems themselves to climate warming. This review brings different
aspects of dairy cow production in Central Europe into focus, with a holistic
approach to emphasize potential future consequences and challenges arising
from climate change. With the current understanding of the effects of climate
change, it is expected that yield of forage per hectare will be influenced
positively, whereas quality will mainly depend on water availability and soil
characteristics. Thus, the botanical composition of future grassland should
include species that are able to withstand the changing conditions (e.g.
lucerne and bird's foot trefoil). Changes in nutrient concentration of forage
plants, elevated heat loads and altered feeding patterns of animals may
influence rumen physiology. Several promising nutritional strategies are
available to lower potential negative impacts of climate change on dairy cow
nutrition and performance. Adjustment of feeding and drinking regimes, diet
composition and additive supplementation can contribute to the maintenance of
adequate dairy cow nutrition and performance. Provision of adequate shade and
cooling will reduce the direct effects of heat stress. As estimated genetic
parameters are promising, heat stress tolerance as a functional trait may be
included into breeding programmes. Indirect effects of global warming on the
health and welfare of animals seem to be more complicated and thus are less
predictable. As the epidemiology of certain gastrointestinal nematodes and
liver fluke is favourably influenced by increased temperature and humidity,
relations between climate change and disease dynamics should be followed
closely. Under current conditions, climate change associated economic impacts
are estimated to be neutral if some form of adaptation is integrated.
Therefore, it is essential to establish and adopt mitigation strategies
covering available tools from management, nutrition, health and plant and
animal breeding to cope with the future consequences of climate change on
dairy farming
The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster
The regulatory protein NsrR, a member of the Rrf2 family of transcription repressors, is specifically dedicated to sensing nitric oxide (NO) in a variety of pathogenic and non-pathogenic bacteria. It has been proposed that NO directly modulates NsrR activity by interacting with a predicted [Fe-S] cluster in the NsrR protein, but no experimental evidence has been published to support this hypothesis. Here we report the purification of NsrR from the obligate aerobe Streptomyces coelicolor. We demonstrate using UV-visible, near UV CD and EPR spectroscopy that the protein contains an NO-sensitive [2Fe-2S] cluster when purified from E. coli. Upon exposure of NsrR to NO, the cluster is nitrosylated, which results in the loss of DNA binding activity as detected by bandshift assays. Removal of the [2Fe-2S] cluster to generate apo-NsrR also resulted in loss of DNA binding activity. This is the first demonstration that NsrR contains an NO-sensitive [2Fe-2S] cluster that is required for DNA binding activity
Structure of the Hsp110:Hsc70 nucleotide exchange machine.
Hsp70s mediate protein folding, translocation, and macromolecular complex remodeling reactions. Their activities are regulated by proteins that exchange ADP for ATP from the nucleotide-binding domain (NBD) of the Hsp70. These nucleotide exchange factors (NEFs) include the Hsp110s, which are themselves members of the Hsp70 family. We report the structure of an Hsp110:Hsc70 nucleotide exchange complex. The complex is characterized by extensive protein:protein interactions and symmetric bridging interactions between the nucleotides bound in each partner protein\u27s NBD. An electropositive pore allows nucleotides to enter and exit the complex. The role of nucleotides in complex formation and dissociation, and the effects of the protein:protein interactions on nucleotide exchange, can be understood in terms of the coupled effects of the nucleotides and protein:protein interactions on the open-closed isomerization of the NBDs. The symmetrical interactions in the complex may model other Hsp70 family heterodimers in which two Hsp70s reciprocally act as NEFs
Characterization of the Interaction between the Cohesin Subunits Rad21 and SA1/2
The cohesin complex is responsible for the fidelity of chromosomal segregation during mitosis. It consists of four core
subunits, namely Rad21/Mcd1/Scc1, Smc1, Smc3, and one of the yeast Scc3 orthologs SA1 or SA2. Sister chromatid cohesion
is generated during DNA replication and maintained until the onset of anaphase. Among the many proposed models of the
cohesin complex, the メcoreメ cohesin subunits Smc1, Smc3, and Rad21 are almost universally displayed as tripartite ring.
However, other than its supportive role in the cohesin ring, little is known about the fourth core subunit SA1/SA2. To gain
deeper insight into the function of SA1/SA2 in the cohesin complex, we have mapped the interactive regions of SA2 and
Rad21 in vitro and ex vivo. Whereas SA2 interacts with Rad21 through a broad region (301ヨ750 aa), Rad21 binds to SA
proteins through two SA-binding motifs on Rad21, namely N-terminal (NT) and middle part (MP) SA-binding motif, located
At 60-81 aa of the N-terminus and 383ヨ392 aa of the MP of Rad21, respectively. The MP SA-binding motif is a 10 amino acid,
a-helical motif. Deletion of these 10 amino acids or mutation of three conserved amino acids (L385, F389, and T390) in this ahelical
motif significantly hinders Rad21 from physically interacting with SA1/2. Besides the MP SA-binding motif, the NT SAbinding
motif is also important for SA1/2 interaction. Although mutations on both SA-binding motifs disrupt Rad21-SA1/2
interaction, they had no apparent effect on the Smc1-Smc3-Rad21 interaction. However, the Rad21-Rad21 dimerization was
reduced by the mutations, indicating potential involvement of the two SA-binding motifs in the formation of the two-ring
handcuff for chromosomal cohesion. Furthermore, mutant Rad21 proteins failed to significantly rescue precocious
chromosome separation caused by depletion of endogenous Rad21 in mitotic cells, further indicating the physiological
significance of the two SA-binding motifs of Rad21
Domain Structure of the Staphylococcus aureus Collagen Adhesin
Sequence analysis of surface proteins from Gram-positive bacteria indicates a composite organization consisting of unique and repeated segments. Thus, these proteins may contain discrete domains that could fold independently. In this paper, we have used a panel of biophysical methods, including gel permeation chromatography, analytical ultracentrifugation, circular dichroism, and fluorescence spectroscopy, to analyze the structural organization of the Staphylococcus aureus collagen adhesin, CNA. Our results indicate that the structure, function, and folding of the ligand-binding domain (A) are not affected by the presence or absence of the other major domain (B). In addition, little or no interaction is observed between the nearly identical repeat units within the B domain. We propose that CNA is indeed a mosaic protein in which the different domains previously indicated by sequence analysis operate independently
BMI1 regulates PRC1 architecture and activity through homo- and hetero-oligomerization.
BMI1 is a core component of the polycomb repressive complex 1 (PRC1) and emerging data support a role of BMI1 in cancer. The central domain of BMI1 is involved in protein-protein interactions and is essential for its oncogenic activity. Here, we present the structure of BMI1 bound to the polyhomeotic protein PHC2 illustrating that the central domain of BMI1 adopts an ubiquitin-like (UBL) fold and binds PHC2 in a beta-hairpin conformation. Unexpectedly, we find that the UBL domain is involved in homo-oligomerization of BMI1. We demonstrate that both the interaction of BMI1 with polyhomeotic proteins and homo-oligomerization via UBL domain are necessary for H2A ubiquitination activity of PRC1 and for clonogenic potential of U2OS cells. Here, we also emphasize need for joint application of NMR spectroscopy and X-ray crystallography to determine the overall structure of the BMI1-PHC2 complex
The Open AUC Project
Progress in analytical ultracentrifugation (AUC) has been hindered by obstructions to hardware innovation and by software incompatibility. In this paper, we announce and outline the Open AUC Project. The goals of the Open AUC Project are to stimulate AUC innovation by improving instrumentation, detectors, acquisition and analysis software, and collaborative tools. These improvements are needed for the next generation of AUC-based research. The Open AUC Project combines on-going work from several different groups. A new base instrument is described, one that is designed from the ground up to be an analytical ultracentrifuge. This machine offers an open architecture, hardware standards, and application programming interfaces for detector developers. All software will use the GNU Public License to assure that intellectual property is available in open source format. The Open AUC strategy facilitates collaborations, encourages sharing, and eliminates the chronic impediments that have plagued AUC innovation for the last 20 years. This ultracentrifuge will be equipped with multiple and interchangeable optical tracks so that state-of-the-art electronics and improved detectors will be available for a variety of optical systems. The instrument will be complemented by a new rotor, enhanced data acquisition and analysis software, as well as collaboration software. Described here are the instrument, the modular software components, and a standardized database that will encourage and ease integration of data analysis and interpretation software
The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site
Ribosome biogenesis in eukaryotes requires the participation of a large number of ribosome assembly factors. The highly conserved eukaryotic nucleolar protein Nep1 has an essential but unknown function in 18S rRNA processing and ribosome biogenesis. In Saccharomyces cerevisiae the malfunction of a temperature-sensitive Nep1 protein (nep1-1ts) was suppressed by the addition of S-adenosylmethionine (SAM). This suggests the participation of Nep1 in a methyltransferase reaction during ribosome biogenesis. In addition, yeast Nep1 binds to a 6-nt RNA-binding motif also found in 18S rRNA and facilitates the incorporation of ribosomal protein Rps19 during the formation of pre-ribosomes. Here, we present the X-ray structure of the Nep1 homolog from the archaebacterium Methanocaldococcus jannaschii in its free form (2.2 Å resolution) and bound to the S-adenosylmethionine analog S-adenosylhomocysteine (SAH, 2.15 Å resolution) and the antibiotic and general methyltransferase inhibitor sinefungin (2.25 Å resolution). The structure reveals a fold which is very similar to the conserved core fold of the SPOUT-class methyltransferases but contains a novel extension of this common core fold. SAH and sinefungin bind to Nep1 at a preformed binding site that is topologically equivalent to the cofactor-binding site in other SPOUT-class methyltransferases. Therefore, our structures together with previous genetic data suggest that Nep1 is a genuine rRNA methyltransferase
The crystal structure of Nep1 reveals an extended SPOUT-class methyltransferase fold and a pre-organized SAM-binding site
Ribosome biogenesis in eukaryotes requires the participation of a large number of ribosome assembly factors. The highly conserved eukaryotic nucleolar protein Nep1 has an essential but unknown function in 18S rRNA processing and ribosome biogenesis. In Saccharomyces cerevisiae the malfunction of a temperature-sensitive Nep1 protein (nep1-1ts) was suppressed by the addition of S-adenosylmethionine (SAM). This suggests the participation of Nep1 in a methyltransferase reaction during ribosome biogenesis. In addition, yeast Nep1 binds to a 6-nt RNA-binding motif also found in 18S rRNA and facilitates the incorporation of ribosomal protein Rps19 during the formation of pre-ribosomes. Here, we present the X-ray structure of the Nep1 homolog from the archaebacterium Methanocaldococcus jannaschii in its free form (2.2 Å resolution) and bound to the S-adenosylmethionine analog S-adenosylhomocysteine (SAH, 2.15 Å resolution) and the antibiotic and general methyltransferase inhibitor sinefungin (2.25 Å resolution). The structure reveals a fold which is very similar to the conserved core fold of the SPOUT-class methyltransferases but contains a novel extension of this common core fold. SAH and sinefungin bind to Nep1 at a preformed binding site that is topologically equivalent to the cofactor-binding site in other SPOUT-class methyltransferases. Therefore, our structures together with previous genetic data suggest that Nep1 is a genuine rRNA methyltransferase
- …
